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Abstract. Tuza (1981) conjectured that the size τ(G) of a minimum set of edges

that meets every triangle of a graph G is at most twice the size ν(G) of a max-

imum set of edge-disjoint triangles of G. In this paper we verify this conjecture

for graphs with treewidth at most 6.

1. Introduction

In this paper, all graphs considered are simple and the notation and terminology are stan-
dard. A triangle transversal of a graph G is a set of edges of G whose deletion results in
a triangle-free graph; and a triangle packing of G is a set of edge-disjoint triangles of G.
We denote by τ(G) (resp. ν(G)) the size of a minimum triangle transversal (resp. triangle
packing) of G. In [Tuza 1981] the following conjecture was posed:

Conjecture (Tuza, 1981). For every graph G, we have τ(G) ≤ 2ν(G).

This conjecture was verified for many classes of graphs, in particular for pla-
nar graphs in [Tuza 1990], and tripartite graphs in [Haxell and Kohayakawa 1998]. A
set of tools for dealing with graphs that contain vertices of small degree was introduced
in [Puleo 2015] (Lemma 4), and Tuza’s Conjecture was verified for graphs with maximum
average degree less than 7, i.e., for graphs in which every subgraph has average degree
less than 7. In this paper, we extend this technique (Lemma 5) in order to prove Tuza’s
Conjecture for graphs with treewidth at most 6 (Theorem 6). The following example
(Figure 1) shows that there are graphs with treewidth at most 6 whose maximum average
degree is at least 7. So our result is not implied by the previous ones. (Conversely, note
that the k × k grid has treewidth at least k and maximum average degree at most 4.) Due
to space limitations, we present only a sketch of some proofs.

Figure 1. A graph with treewidth 6 and average degree 22/3.



A rooted tree is a pair (T, r), where T is a tree and r is a vertex of T .
Given t ∈ V (T ), let PT (t) be the unique path in T that joins r and t. If t′ is a vertex
in V (PT (t)), then t′ is an ancestor of t. Every vertex in T that has t as its ancestor is
called a descendant of t. If t ̸= r, then the parent of t, denoted by p(t), is the ancestor
of t that is adjacent to t. The successors of t are the vertices whose parent is t, and we
denote the set of sucessors of t by ST (t). The height of t, denoted by hT (t), is the length
of a longest path that joins t to a descendant of t. When T is clear from the context, we
simply write S(t) and h(t). For a graph G and a vertex v of G, we denote by NG(v) the
set of neighbors of v in G. When G is clear from the context, we simply write N(v).

A tree decomposition of a graph G is a pair (T,V), consisting of a tree T and a
collection V = {Vt : t ∈ V (T )} of bags Vt ⊆ V (G), satisfying the following conditions:

(T1)
⋃

t∈V (T ) Vt = V (G);
(T2) for every uv ∈ E(G), there exists a bag Vt such that u, v ∈ Vt;
(T3) if a vertex v is in two different bags Vt1 , Vt2 , then v ∈ Vt for every t in the path

of T that joins t1 and t2.

The width of (T,V) is the number max{|Vt| − 1 : t ∈ V (T )}, and the treewidth tw(G)
of G is the minimum width of any tree decomposition ofG. We refer to the vertices of T as
nodes. If G is a graph with treewidth k, then we say that (T,V) is a full tree decomposition

of G if |Vt| = k + 1 for every t ∈ V (T ), and |Vt ∩ Vt′ | = k for every tt′ ∈ E(T ). Every
graph has a full tree decomposition (see [Bodlaender 1998, Gross 2014]).

We say that a triple (V, T, r) is a rooted tree decomposition of a graph G if (V, T )
is a full tree decomposition of G, (T, r) is a rooted tree, and Vt ∩ Vp(t) ̸= Vt ∩ Vt′ for
every t ∈ V (T ) \ {r} and t′ ∈ S(t). Given a rooted tree decomposition (V, T, r) of a
graph G, and a node t ∈ V (T ) with t ̸= r, we say that the (unique) vertex vt ∈ Vt \ Vp(t)

is the representative of t.

Proposition 1. Every graph has a rooted tree decomposition.

Proposition 2. If t is a leaf of a rooted tree decomposition of a graph G and y is the

representative of t, then NG(y) ⊆ Vt.

2. Graphs with treewidth at most 6

A nonempty set V0 ⊆ V (G) is called reducible if there is a set X ⊆ E(G) and a set Y
of edge-disjoint triangles in G such that the following conditions hold: (i) |X| ≤ 2|Y |;
(ii) every triangle containing a vertex of V0 has an edge in X; and (iii) if uv ∈ E(A)
for some A ∈ Y , and u, v /∈ V0, then uv ∈ X . When V0, X , and Y satisfy the definition
above, we say that V0 is reducible using X and Y . When G has no reducible set, we say
that G is irreducible. The following lemma comes naturally.

Lemma 3 ([Puleo 2015, Lemma 2.2]). Let G be a graph and V0 ⊆ V (G) be reducible

using X and Y . Let G′ = (G−X)− V0. If τ(G′) ≤ 2ν(G′), then τ(G) ≤ 2ν(G).

We say that a graph G is robust if, for every v ∈ V (G), every component
of G[N(v)] has order at least 5. The following lemma (see [Puleo 2015, Lemma 2.7])
is an important tool in our proof. In what follows, the closed neighborhood N(u) ∪ {u}
of a vertex u ∈ V (G) is denoted by N [u] and ∆(G) is the maximum degree in G.

Lemma 4. If G is an irreducible robust graph and x, y ∈ V (G), then the following holds.



(a) if d(x) ≤ 6, then ∆(G[N(x)]) ≤ 1 and |E(G[N(x)])| ≠ 2;
(b) if d(x) ≤ 6 and d(y) ≤ 6 then xy /∈ E(G);
(c) if d(x) = 7 and d(y) = 6 then N [y] ̸⊆ N [x];
(d) if d(x) ≤ 8 and d(y) = 5, then N [y] ̸⊆ N [x].

In this paper we extend the result above to the following lemma.

Lemma 5. If G is an irreducible robust graph and x, y ∈ V (G) are such that xy /∈ E(G),
d(x), d(y) ≤ 6, and |N(x) ∪ N(y)| ≤ 7, then d(x) = d(y) = 5, |N(x) ∩N(y)| = 3,

and G[N(x)], G[N(y)] ≃ K5.

The following theorem is the main result of this paper.

Theorem 6. If G is a graph with treewidth at most 6, then τ(G) ≤ 2ν(G).

Proof. Suppose, for a contradiction, that the statement does not hold, and let G be a
minimal counterexample. It is not hard to check that |V (G)| ≥ 8. We claim that G is
irreducible. Indeed, suppose that there is a set V0 ⊆ V (G) that is reducible using X
and Y , and let G′ = (G − X) − V0. Since G′ ⊆ G, we have tw(G′) ≤ 6, and by
the minimality of G, we have τ(G′) ≤ 2ν(G′). Thus, by Lemma 4, τ(G) ≤ 2ν(G), a
contradiction. It is not hard to check that G is also robust, and hence has minimum degree
at least 5.

By Proposition 1, G has a rooted tree decomposition (T,V, r). Since |V (G)| ≥ 8,
we have |V (T )| > 1, and hence there is a node t ∈ V (T ) with h(t) = 1. Suppose
that S(t) = {t′}, and Vt = {vt, v1, v2, v3, v4, v5, v6}, where vt is the representative of t
if t ̸= r. Since (T,V, r) is a rooted tree decomposition of G, we may assume that
Vt′ = {vt, v1, v2, v3, v4, v5, x}, with x ̸= v6. By Proposition 2, d(x) ≤ 6, which im-
plies, that d(x) ∈ {5, 6}. Also, by Proposition 2 applied to G − x and t, we have
that NG−x(vt) ⊆ Vt. Thus d(vt) = |N(vt)| ≤ |NG−x(vt)|+ 1 ≤ |Vt| = 7.

Suppose that d(vt) = 7. Now N [x] ̸⊆ N [vt] since d(x) ∈ {5, 6}, either by
Lemma 4(c) or by Lemma 4(d). But, since d(vt) = 7, note that vt is adjacent to x and
to every vertex in Vt \ {vt}, hence N [x] ⊆ N [vt], a contradiction. So we may assume
that d(vt) ≤ 6, and hence vtx /∈ E(G) by Lemma 4(b). Since d(vt) ≥ 5, there are at
least four neighbors of vt in {v1, v2, v3, v4, v5}, say v1, v2, v4, v5. Now, since vtx /∈ E(G),
we have d(x) = 5. Thus, by Lemma 4(a), we have that |E(G[N(x)])| ∈ {9, 10}.
If |E(G[N(x)])| = 10, then put

X = ({vtv6}∩E(G))∪E(G[{v1, v2, v3, v4, v5}]) and Y = {v1v2v3, v3v4v5, v1v4x, v2v5x, v1v5vt, v2v4vt}.

Note that |X| ≤ 11 ≤ 12 = 2|Y |. It is not hard to check that V0 = {vt, x} is reducible
using X and Y , a contradiction. So we may assume that |E(G[N(x)])| = 9. Note that
the missing edge e /∈ E(G[N(v)]) must be incident to a neighbor, say v5, of vt. Thus we
may assume that e ∈ {v3v5, v4v5}. Put

X = ({vtv6}∩E(G))∪E(G[{v1, v2, v3, v4, v5}]) and Y = {v1v2v3, v1v5x, v3v4x, v1v4vt, v2v5vt}.

Note that |X| ≤ 10 = 2|Y |. It is not hard to check that V0 = {vt, x} is reducible using X
and Y , a contradiction.

Therefore we may assume that |S(t)| > 1. First, suppose that |S(t)| ≥ 3, and
let t1, t2, t3 ∈ S(t), and vertices x, y, z be the representatives of t1, t2, t3, respectively.



Note that, by Proposition 2, xy, xz, yz /∈ E(G) and |N(x) ∪N(y)|, |N(x) ∪N(z)|,
and |N(y) ∪N(z)| ≤ |Vt| = 7. Thus, by Lemma 5, d(x) = d(y) = d(z) = 5,
|N(x) ∩N(y)|=|N(x) ∩N(z)|=|N(y) ∩N(z)| = 3, and G[N(x)], G[N(y)], G[N(z)] ≃
K5. Assume without loss of generality that N(x) = {v1, v2, v3, v4, v5}. Since |N(x) ∩
N(y)| = 3, we may assume, without loss of generality, that N(y) = {v3, v4, v5, v6, v7}.
It is not hard to check that, since |N(x) ∩N(z)| = |N(y) ∩N(z)| = 3 and |N(z)| = 5 ,
then N(z) contains exactly one vertex in N(x) ∩N(y). So we may assume, without loss
of generality, that N(z) = {v1, v2, v4, v6, v7}. Let H = G[{v1, v2, v3, v4, v5, v6, v7}] and
note that every pair of vertices of H is contained in at least one N(v) for v ∈ {x, y, z}.
Thus, since G[N(v)] is isomorphic to K5 for v ∈ {x, y, z}, H is isomorphic to K7.
Let X = E(H) and note that |X| = 21. Put

Y1 = {xv1v3, xv2v5, yv3v4, yv5v6, zv1v6, zv2v4};
Y2 = {v1v2v7, v2v3v6, v4v6v7, v3v5v7, v1v4v5},

and note that if Y = Y1 ∪ Y2, then |Y | = 11 and |X| ≤ 2|Y |. Hence V0 = {x, y, z} is
reducible using X and Y , a contradiction. We conclude that |S(t)| ≤ 2.

If t ̸= r, we let w be the representative of t, otherwise we let w be an arbitrary ver-
tex of Vt. Let t1, t2 ∈ S(t) and let x, y be the representatives of t1, t2, respectively. Again,
by Lemma 5, we have d(x) = d(y) = 5, |N(x) ∩ N(y)| = 3, and G[N(x)], G[N(y)] ≃
K5. Note that t is a leaf of (T ′,V ′, r), where T ′ = T − t1 − t2 and V ′ = V \ {Vt1, Vt2},
hence dG−x−y(w) ≤ 6. Thus, we have dG(w) ≤ 8. Note that w ∈ N(x) ∪N(y) and
assume, without loss of generality, that w ∈ N(x). Since G[N(x)] is a complete graph,
we have N [x] ⊆ N [w], a contradiction to Lemma 4(d). This concludes the proof.

3. Concluding remarks

This work has benefited greatly from [Puleo 2015]. Nevertheless, there were still gaps
that we were able to explore. As we can see, the tree decomposition, specially under
bounded treewidth, provides a suitable structure for problems of this nature. We believe
that these techniques may be further improved by studying the behaviour of nodes from
the tree decomposition with different heights.
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