
Practical aspects of `0-sampling algorithms

Juan P. A. Lopes1, Fabiano S. Oliveira2, Valmir C. Barbosa1

1PESC/COPPE – Universidade Federal do Rio de Janeiro – Rio de Janeiro – Brasil
2IME – Universidade do Estado do Rio de Janeiro – Rio de Janeiro – Brasil

jlopes@cos.ufrj.br, fabiano.oliveira@ime.uerj.br, valmir@cos.ufrj.br

Abstract. The `
0

-sampling problem plays an important role in streaming graph
algorithms. In this paper, we revisit a near-optimal `

0

-sampling algorithm,
proposing a variant that allows proving a tighter upper bound for the proba-
bility of failure. We compare experimental results of both variants, providing
empirical evidence of their applicability in real-case scenarios.

1. Introduction

The `
0

-sampling problem consists in sampling a nonzero coordinate from a dynamic vec-
tor a = (a

1

, . . . , an) with uniform probability. This vector is defined in a turnstile model,
which consists of a stream of updates S = hs

1

, s
2

, . . . , sti on a (initially 0), where
si = (ui,�i) 2 {1, . . . , n} ⇥ R for all 1 i t, meaning an increment of �i units
to aui . It is desirable that such sample be produced in a single pass through the stream
with sublinear space complexity. The challenge arises from the fact that, since �i can be
negative and hence some updates in the stream may cancel others, directly sampling the
stream may lead to incorrect results.

The research on `
0

-sampling algorithms has recently gained some traction, in
part due to results showing that these algorithms can be used as building blocks in
many other algorithms [Cormode and Firmani 2014]. For example, the sampling of
nonzero coordinates from rows of the incidence matrix of a graph can be used to
compute connected components, k-connectivity, bipartiteness, and approximate mini-
mum spanning trees in dynamic graphs using O(n log

c n) bits, for some constant c
[Ahn et al. 2012, McGregor 2014].

In order to achieve sublinear space complexity in a single pass, an `
0

-sampling
algorithm must represent a through a lower-dimensional projection. This representation
is known as a sketch. Sketch-based algorithms are common in streaming scenarios, by
virtue of allowing compact representations of the original data, whilst retaining some
useful information about them.

In [Cormode et al. 2005], a seminal sketch-based algorithm for the `
0

-sampling
problem is introduced. The algorithm uses a universal family of hash functions to partition
the vector a into O(log n) subvectors with exponentially decreasing probabilities of rep-
resenting each element of a. It is proven that there is a constant lower bound on the prob-
ability that at least one of those subvectors has exactly one nonzero coordinate. Through a
procedure called 1-sparse recovery (Section 2), which requires O(log n) bits for each sub-
vector, it is possible to recover such coordinate. Considering that the probability of failure
has a constant upper bound, running O(log(1/�)) independent instances of the algorithm

can ensure a success probability of at least 1 � �. The total space complexity of this al-
gorithm is O(log

2 n log(1/�)). Further studies show stronger results by relaxing assump-
tions on the hash functions used [Monemizadeh and Woodruff 2010, Jowhari et al. 2011].
Nevertheless, they keep the same worst-case space complexity. In fact, any algorithm that
performs `

0

-sampling in a single pass should require ⌦(log

2 n) bits in the worst case
[Jowhari et al. 2011]. This holds even if the algorithm allows a relative error of ✏ and a
failure probability of �, for constants ✏ and �.

2. 1-sparse recovery procedure
A vector is 1-sparse when it has a single nonzero coordinate. A 1-sparse recovery proce-
dure allows deciding whether a vector a is 1-sparse, and possibly recover the only nonzero
coordinate from it. Note that while a is expected to be 1-sparse at the time of a successful
recovery, it may have any number of nonzero coordinates before that. This procedure is a
building block for many `

0

-sampling algorithms. Here we present a false-biased random-
ized variant that handles cases where a has negative values [Cormode and Firmani 2014].
It begins by choosing a sufficiently large prime p 2 ⇥(nc

), with c > 1, and random
integer z 2 Zp. Then, iterating through all si = (ui,�i) 2 S, three sums are computed:

b
0

=

tX

i=1

�i, b
1

=

tX

i=1

�iui, b
2

=

tX

i=1

�iz
ui

mod p.

If a is 1-sparse, it is easy to see that the nonzero coordinate can be recovered as
i = b

1

/b
0

, with ai = b
0

. However, verifying that a is 1-sparse requires more effort.

Theorem 1. If a is 1-sparse, then b
2

⌘ b
0

zb1/b0 mod p. Otherwise, b
2

6⌘ b
0

zb1/b0 mod p
with probability at least 1� n/p.

Proof (sketch). If a is 1-sparse, with a nonzero coordinate i, it is trivial to see that b
2

⌘
aiz

i
mod p. Otherwise, b

2

⌘ b
0

zb1/b0 mod p may still hold if z is a root in Zp of the
polynomial p(z) = b

0

zb1/b0 �
P

�iz
ui . As p(z) is an degree-n polynomial, it has at

most n roots in Zp. Therefore, given that z is chosen at random, the probability of a false
recovery is at most n/p. ⌅

This 1-sparse recovery procedure stores z, and the sums b
0

, b
1

, and b
2

. Assuming
that every ai is limited by a polynomial in n, the total space required is O(log n) bits.

3. `0-sampling algorithm
In this work, two variants of the same `

0

-sampling algorithm are presented. Both variants
define a(1),a(2), . . . ,a(m) subvectors of a. For all 1 j m, each ai 6= 0 has a 1/2j

probability of being present at a(j), that is, a(j)i = ai with probability 1/2j , otherwise
a
(j)
i = 0. To decide whether a(j)i is present, we draw a hash function hj : {1, . . . , n} !

{0, . . . , 2m�1} from a universal family, and observe whether m�blog
2

hj(i)c = j, which
happens with probability 1/2j . An independent 1-sparse recovery is then computed for
each a(j). The variants differ only in the number of functions used. Variant (a) uses
a single hash function for every a(j) (Algorithm 1), while Variant (b) uses a different
function for each subvector (Algorithm 2). While (a) is more useful in practice, the error
analysis in (b) is more straightforward. We provide empirical evidence in Section 4 that
the error in either variant converges quickly as a function of n.

Algorithm 1 Variant (a)
1: M [1..m]: 1-sparse recoveries
2: for each (ui,�i) 2 S do
3: k m� blog2 h(ui)c
4: M [k].b0 += �i

5: M [k].b1 += �iui

6: M [k].b2 += �iM [k].zui
mod p

7: for j 2 [1..m] do
8: v M [j].b0M [j].zM [j].b1/M [j].b0

mod p
9: if M [j].b2 = v then

10: return M [j].b1/M [j].b0
11: report FAILURE

Algorithm 2 Variant (b)
1: M [1..m] : 1-sparse recoveries
2: for each (ui,�i) 2 S do
3: for j 2 [1..m] do
4: k m� blog2 hj(ui)c
5: if k = j then
6: M [k].b0 += �i

7: M [k].b1 += �iui

8: M [k].b2 += �iM [k].zui
mod p

9: for j 2 [1..m] do
10: v M [j].b0M [j].zM [j].b1/M [j].b0

mod p
11: if M [j].b2 = v then
12: return M [j].b1/M [j].b0
13: report FAILURE

Every variant either succeeds in returning a single nonzero coordinate of a, or
reports a failure. The probability of failure is given by the joint probability of failure of
all m 1-sparse recoveries. In Variant (b), those are independent events. Moreover, the
probability that a single recovery M [j] fails is the complement of the probability that a(j)

is 1-sparse, that is, assuming a has r � 1 nonzero coordinates:

Pr[FAILURE] =
mY

j=1

�
1� r2�j

(1� 2

�j
)

r�1

�
⇡

mY

j=1

⇣
1� r2�je�r2�j

⌘
.

Theorem 2. If 5 log

2

r m� 5, then Pr[FAILURE] 0.31, for Variant (b).

Proof (sketch). It is easy to see that the lowest probabilities of failure concentrate around
j such that 2j r < 2

j+1. Letting q = r/2blog2 rc, it holds that

Pr[FAILURE]
5Y

k=�5

⇣
1� q2ke�q2k

⌘
.

Note that 1 q < 2. In this interval, all factors 1� q2ke�q2k are either monotonically in-
creasing or decreasing. Analyzing their global maxima, we arrive at a maximum product
of approximately 0.3071, therefore Pr[FAILURE] 0.31. ⌅

This result shows that, as n grows, choosing m = 5+dlog
2

ne is enough to ensure
a constant upper bound on the probability of failure. Furthermore, to ensure a success
probability of at least 1� �, it is sufficient to run dlog

0.31 �e instances of the algorithm.

4. Empirical evaluation and outlook

In order to assess the algorithms behavior in a real implementation, an experiment was
set up. Both variants were implemented and tested with a vector of size n = 4096

and increasing values of r. We tested both a correctly sized (i.e., for m = 17) and an
undersized instance of the `

0

-sampling algorithm. The empirical cumulative distribution
was also recorded. The experiment was run 100 000 times and the mean value for each
data point is reported in Figure 1.

32 1024 2048 3072 4096

0%

20%

40%

60%

80%

100%

Va
ri

an
t(

a)
Failures, n = 4096,m = 17

failure rate

32 1024 2048 3072 4096

Failures, n = 4096,m = 10 (undersized)

failure rate

32 1024 2048 3072 4096

CDF, n = 4096,m = 17

cumulative distribution

32 1024 2048 3072 4096

0%

20%

40%

60%

80%

100%

Number of nonzero coordinates (r)

Va
ri

an
t(

b)

32 1024 2048 3072 4096

Number of nonzero coordinates (r)
32 1024 2048 3072 4096

Sampled coordinate

Figure 1. Failure rate and cumulative distribution of successes.

This experiment suggests that in a correctly sized `
0

-sampling, the failure proba-
bility stays almost constant under 20%. There is little difference between Variants (a) and
(b). Furthermore, in an undersized setup, the failure rate rapidly reaches critical levels.

In conclusion, we have introduced a variant of the `
0

-sampling algorithm and
proved its failure probability to be bounded by a constant value, provided a certain
structure-size condition is met. Research is ongoing on the proof of exact probabili-
ties of failure for both algorithm variants. Future research may also include novel graph
algorithms that use `

0

-sampling as a primitive.

References
Ahn, K. J., Guha, S., and McGregor, A. (2012). Analyzing graph structure via linear

measurements. In Proceedings of SODA’12, pages 459–467.

Cormode, G. and Firmani, D. (2014). A unifying framework for `
0

-sampling algorithms.
Distributed and Parallel Databases, 32(3):315–335.

Cormode, G., Muthukrishnan, S., and Rozenbaum, I. (2005). Summarizing and mining
inverse distributions on data streams via dynamic inverse sampling. In Proceedings of
VLDB’05, pages 25–36.

Jowhari, H., Sağlam, M., and Tardos, G. (2011). Tight bounds for lp samplers, finding
duplicates in streams, and related problems. In Proceedings of PODS’11, pages 49–58.

McGregor, A. (2014). Graph stream algorithms: a survey. ACM SIGMOD Record,
43(1):9–20.

Monemizadeh, M. and Woodruff, D. P. (2010). 1-pass relative-error lp-sampling with
applications. In Proceedings of SODA’10, pages 1143–1160.

