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Abstract. The (y-sampling problem plays an important role in streaming graph
algorithms. In this paper, we revisit a near-optimal (y-sampling algorithm,
proposing a variant that allows proving a tighter upper bound for the proba-

bility of failure. We compare experimental results of both variants, providing
empirical evidence of their applicability in real-case scenarios.

1. Introduction

The ¢y-sampling problem consists in sampling a nonzero coordinate from a dynamic vec-

tor a = (ay, . .., a,) with uniform probability. This vector is defined in a turnstile model,
which consists of a stream of updates S = (si,S2,...,5;) on a (initially 0), where
si = (u;, A;) € {1,...,n} x Rforall 1 < i < ¢, meaning an increment of A; units

to a,,. It is desirable that such sample be produced in a single pass through the stream
with sublinear space complexity. The challenge arises from the fact that, since A; can be
negative and hence some updates in the stream may cancel others, directly sampling the
stream may lead to incorrect results.

The research on {y-sampling algorithms has recently gained some traction, in
part due to results showing that these algorithms can be used as building blocks in
many other algorithms [Cormode and Firmani 2014]. For example, the sampling of
nonzero coordinates from rows of the incidence matrix of a graph can be used to
compute connected components, k-connectivity, bipartiteness, and approximate mini-
mum spanning trees in dynamic graphs using O(nlog®n) bits, for some constant ¢
[Ahn et al. 2012, McGregor 2014].

In order to achieve sublinear space complexity in a single pass, an ¢y-sampling
algorithm must represent a through a lower-dimensional projection. This representation
is known as a sketch. Sketch-based algorithms are common in streaming scenarios, by
virtue of allowing compact representations of the original data, whilst retaining some
useful information about them.

In [Cormode et al. 2005], a seminal sketch-based algorithm for the ¢y-sampling
problem is introduced. The algorithm uses a universal family of hash functions to partition
the vector a into O(log n) subvectors with exponentially decreasing probabilities of rep-
resenting each element of a. It is proven that there is a constant lower bound on the prob-
ability that at least one of those subvectors has exactly one nonzero coordinate. Through a
procedure called 1-sparse recovery (Section 2), which requires O(log n) bits for each sub-
vector, it is possible to recover such coordinate. Considering that the probability of failure
has a constant upper bound, running O(log(1/¢)) independent instances of the algorithm



can ensure a success probability of at least 1 — 9. The total space complexity of this al-
gorithm is O(log® nlog(1/6)). Further studies show stronger results by relaxing assump-
tions on the hash functions used [Monemizadeh and Woodruff 2010, Jowhari et al. 2011].
Nevertheless, they keep the same worst-case space complexity. In fact, any algorithm that
performs /y-sampling in a single pass should require (log®n) bits in the worst case
[Jowhari et al. 2011]. This holds even if the algorithm allows a relative error of € and a
failure probability of ¢, for constants € and 9.

2. 1-sparse recovery procedure

A vector is 1-sparse when it has a single nonzero coordinate. A 1-sparse recovery proce-
dure allows deciding whether a vector a is 1-sparse, and possibly recover the only nonzero
coordinate from it. Note that while a is expected to be 1-sparse at the time of a successful
recovery, it may have any number of nonzero coordinates before that. This procedure is a
building block for many ¢,-sampling algorithms. Here we present a false-biased random-
ized variant that handles cases where a has negative values [Cormode and Firmani 2014].
It begins by choosing a sufficiently large prime p € ©(n¢), with ¢ > 1, and random
integer z € Z,,. Then, iterating through all s; = (u;, AA;) € S, three sums are computed:

t t t
b() = Z Az‘, bl = Z Aiui, bg = Z Aiz“i mod p.
i=1 i=1 =1

If a is 1-sparse, it is easy to see that the nonzero coordinate can be recovered as
i = by /by, with a; = by. However, verifying that a is 1-sparse requires more effort.

Theorem 1. If a is 1-sparse, then by = byz" /% mod p. Otherwise, by % by2"/* mod p
with probability at least 1 — n/p.

Proof (sketch). If a is 1-sparse, with a nonzero coordinate 1, it is trivial to see that b, =
a;z' mod p. Otherwise, by = byz? /% mod p may still hold if z is a root in Z,, of the
polynomial p(z) = byz®/% — ST A;z%. As p(z) is an degree-n polynomial, it has at
most n roots in Z,,. Therefore, given that z is chosen at random, the probability of a false
recovery is at most n/p. |

This 1-sparse recovery procedure stores z, and the sums by, b1, and by. Assuming
that every a; is limited by a polynomial in n, the total space required is O(log n) bits.

3. £p-sampling algorithm

In this work, two variants of the same /,-sampling algorithm are presented. Both variants
define a®,a(®, ... a{™ subvectors of a. Forall 1 < j < m, each a; # O hasa 1/2/
probability of being present at a'9), that is, agj ) = a; with probability 1/27, otherwise
al(-j ) = 0. To decide whether al(-j ) is present, we draw a hash function h; :{1,....,n} —
{0,...,2™—1} from a universal family, and observe whether m — |log, h;(i)| = j, which
happens with probability 1/27. An independent 1-sparse recovery is then computed for
each a¥). The variants differ only in the number of functions used. Variant (a) uses
a single hash function for every a¥) (Algorithm 1), while Variant (b) uses a different
function for each subvector (Algorithm 2). While (a) is more useful in practice, the error
analysis in (b) is more straightforward. We provide empirical evidence in Section 4 that

the error in either variant converges quickly as a function of n.



Algorithm 1 Variant (a) Algorithm 2 Variant (b)

1: M][1l..m]: 1-sparse recoveries 1: M][1..m] : 1-sparse recoveries

2: for each (u;, A;) € Sdo 2: for each (u;, A;) € S do

3: k+ m— |logyh(u;)] 3: forj € [l..m]do

4. M[k‘]bo +=A; 4. k<« m— |_10g2 hj (ul)J

50 MIk].by += A, 5: if k = j then

6:  Ml[k].bo += A;M[k].2* mod p 6: MIk].by += A;

7: for j € [1..m] do 7 Mk].by += Aju;

8 v M[j].boM[j].zMUlb1/Mlilbo 1od p 8 MIk].bg += A;M[E].z* mod p
9: if M[j].by = v then 9: for j € [1..m] do
10: return M [j].by /M 5].bo 10: v < M[j].boM[j].zMULb1/Mlilbo mod p
11: report FAILURE 11: if M[j].bo = v then

12: return M j].by /M[j].bo
13: report FAILURE

Every variant either succeeds in returning a single nonzero coordinate of a, or
reports a failure. The probability of failure is given by the joint probability of failure of
all m 1-sparse recoveries. In Variant (b), those are independent events. Moreover, the
probability that a single recovery M [j] fails is the complement of the probability that a9
is 1-sparse, that is, assuming a has r > 1 nonzero coordinates:

Pr[FAILURE| = H 1 —r2” J 2*3')7‘*1) ~ H <1 _ 7,2—3'6#2*1) .
j=1 j=1

Theorem 2. If 5 < log, r < m — 5, then Pr[FAILURE] < 0.31, for Variant (b).

Proof (sketch). 1t is easy to see that the lowest probabilities of failure concentrate around
jsuchthat 27 < r < 27!, Letting ¢ = r/21°827] it holds that

5
Pr[FAILURE] < [] (1 — q2’“e“12k) .
k=-5

Note that 1 < ¢ < 2. In this interval, all factors 1 — qle_qQk are either monotonically in-
creasing or decreasing. Analyzing their global maxima, we arrive at a maximum product
of approximately 0.3071, therefore Pr[FAILURE| < 0.31. |

This result shows that, as n grows, choosing m = 5+ [log, n] is enough to ensure
a constant upper bound on the probability of failure. Furthermore, to ensure a success
probability of at least 1 — 4, it is sufficient to run [log, 4, | instances of the algorithm.

4. Empirical evaluation and outlook

In order to assess the algorithms behavior in a real implementation, an experiment was
set up. Both variants were implemented and tested with a vector of size n = 4096
and increasing values of . We tested both a correctly sized (i.e., for m = 17) and an
undersized instance of the ¢y-sampling algorithm. The empirical cumulative distribution
was also recorded. The experiment was run 100 000 times and the mean value for each
data point is reported in Figure 1.
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Figure 1. Failure rate and cumulative distribution of successes.

This experiment suggests that in a correctly sized ¢y-sampling, the failure proba-
bility stays almost constant under 20%. There is little difference between Variants (a) and
(b). Furthermore, in an undersized setup, the failure rate rapidly reaches critical levels.

In conclusion, we have introduced a variant of the ¢y-sampling algorithm and
proved its failure probability to be bounded by a constant value, provided a certain
structure-size condition is met. Research is ongoing on the proof of exact probabili-
ties of failure for both algorithm variants. Future research may also include novel graph
algorithms that use ¢y-sampling as a primitive.
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