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Abstract. The `
0

-sampling problem plays an important role in streaming graph
algorithms. In this paper, we revisit a near-optimal `

0

-sampling algorithm,
proposing a variant that allows proving a tighter upper bound for the proba-
bility of failure. We compare experimental results of both variants, providing
empirical evidence of their applicability in real-case scenarios.

1. Introduction

The `
0

-sampling problem consists in sampling a nonzero coordinate from a dynamic vec-
tor a = (a

1

, . . . , an) with uniform probability. This vector is defined in a turnstile model,
which consists of a stream of updates S = hs

1

, s
2

, . . . , sti on a (initially 0), where
si = (ui,�i) 2 {1, . . . , n} ⇥ R for all 1  i  t, meaning an increment of �i units
to aui . It is desirable that such sample be produced in a single pass through the stream
with sublinear space complexity. The challenge arises from the fact that, since �i can be
negative and hence some updates in the stream may cancel others, directly sampling the
stream may lead to incorrect results.

The research on `
0

-sampling algorithms has recently gained some traction, in
part due to results showing that these algorithms can be used as building blocks in
many other algorithms [Cormode and Firmani 2014]. For example, the sampling of
nonzero coordinates from rows of the incidence matrix of a graph can be used to
compute connected components, k-connectivity, bipartiteness, and approximate mini-
mum spanning trees in dynamic graphs using O(n log

c n) bits, for some constant c
[Ahn et al. 2012, McGregor 2014].

In order to achieve sublinear space complexity in a single pass, an `
0

-sampling
algorithm must represent a through a lower-dimensional projection. This representation
is known as a sketch. Sketch-based algorithms are common in streaming scenarios, by
virtue of allowing compact representations of the original data, whilst retaining some
useful information about them.

In [Cormode et al. 2005], a seminal sketch-based algorithm for the `
0

-sampling
problem is introduced. The algorithm uses a universal family of hash functions to partition
the vector a into O(log n) subvectors with exponentially decreasing probabilities of rep-
resenting each element of a. It is proven that there is a constant lower bound on the prob-
ability that at least one of those subvectors has exactly one nonzero coordinate. Through a
procedure called 1-sparse recovery (Section 2), which requires O(log n) bits for each sub-
vector, it is possible to recover such coordinate. Considering that the probability of failure
has a constant upper bound, running O(log(1/�)) independent instances of the algorithm



can ensure a success probability of at least 1 � �. The total space complexity of this al-
gorithm is O(log

2 n log(1/�)). Further studies show stronger results by relaxing assump-
tions on the hash functions used [Monemizadeh and Woodruff 2010, Jowhari et al. 2011].
Nevertheless, they keep the same worst-case space complexity. In fact, any algorithm that
performs `

0

-sampling in a single pass should require ⌦(log

2 n) bits in the worst case
[Jowhari et al. 2011]. This holds even if the algorithm allows a relative error of ✏ and a
failure probability of �, for constants ✏ and �.

2. 1-sparse recovery procedure
A vector is 1-sparse when it has a single nonzero coordinate. A 1-sparse recovery proce-
dure allows deciding whether a vector a is 1-sparse, and possibly recover the only nonzero
coordinate from it. Note that while a is expected to be 1-sparse at the time of a successful
recovery, it may have any number of nonzero coordinates before that. This procedure is a
building block for many `

0

-sampling algorithms. Here we present a false-biased random-
ized variant that handles cases where a has negative values [Cormode and Firmani 2014].
It begins by choosing a sufficiently large prime p 2 ⇥(nc

), with c > 1, and random
integer z 2 Zp. Then, iterating through all si = (ui,�i) 2 S, three sums are computed:

b
0

=

tX

i=1

�i, b
1

=

tX

i=1

�iui, b
2

=

tX

i=1

�iz
ui

mod p.

If a is 1-sparse, it is easy to see that the nonzero coordinate can be recovered as
i = b

1

/b
0

, with ai = b
0

. However, verifying that a is 1-sparse requires more effort.

Theorem 1. If a is 1-sparse, then b
2

⌘ b
0

zb1/b0 mod p. Otherwise, b
2

6⌘ b
0

zb1/b0 mod p
with probability at least 1� n/p.

Proof (sketch). If a is 1-sparse, with a nonzero coordinate i, it is trivial to see that b
2

⌘
aiz

i
mod p. Otherwise, b

2

⌘ b
0

zb1/b0 mod p may still hold if z is a root in Zp of the
polynomial p(z) = b

0

zb1/b0 �
P

�iz
ui . As p(z) is an degree-n polynomial, it has at

most n roots in Zp. Therefore, given that z is chosen at random, the probability of a false
recovery is at most n/p. ⌅

This 1-sparse recovery procedure stores z, and the sums b
0

, b
1

, and b
2

. Assuming
that every ai is limited by a polynomial in n, the total space required is O(log n) bits.

3. `0-sampling algorithm
In this work, two variants of the same `

0

-sampling algorithm are presented. Both variants
define a(1),a(2), . . . ,a(m) subvectors of a. For all 1  j  m, each ai 6= 0 has a 1/2j

probability of being present at a(j), that is, a(j)i = ai with probability 1/2j , otherwise
a
(j)
i = 0. To decide whether a(j)i is present, we draw a hash function hj : {1, . . . , n} !

{0, . . . , 2m�1} from a universal family, and observe whether m�blog
2

hj(i)c = j, which
happens with probability 1/2j . An independent 1-sparse recovery is then computed for
each a(j). The variants differ only in the number of functions used. Variant (a) uses
a single hash function for every a(j) (Algorithm 1), while Variant (b) uses a different
function for each subvector (Algorithm 2). While (a) is more useful in practice, the error
analysis in (b) is more straightforward. We provide empirical evidence in Section 4 that
the error in either variant converges quickly as a function of n.



Algorithm 1 Variant (a)
1: M [1..m]: 1-sparse recoveries
2: for each (ui,�i) 2 S do
3: k  m� blog2 h(ui)c
4: M [k].b0 += �i

5: M [k].b1 += �iui

6: M [k].b2 += �iM [k].zui
mod p

7: for j 2 [1..m] do
8: v  M [j].b0M [j].zM [j].b1/M [j].b0

mod p
9: if M [j].b2 = v then

10: return M [j].b1/M [j].b0
11: report FAILURE

Algorithm 2 Variant (b)
1: M [1..m] : 1-sparse recoveries
2: for each (ui,�i) 2 S do
3: for j 2 [1..m] do
4: k  m� blog2 hj(ui)c
5: if k = j then
6: M [k].b0 += �i

7: M [k].b1 += �iui

8: M [k].b2 += �iM [k].zui
mod p

9: for j 2 [1..m] do
10: v  M [j].b0M [j].zM [j].b1/M [j].b0

mod p
11: if M [j].b2 = v then
12: return M [j].b1/M [j].b0
13: report FAILURE

Every variant either succeeds in returning a single nonzero coordinate of a, or
reports a failure. The probability of failure is given by the joint probability of failure of
all m 1-sparse recoveries. In Variant (b), those are independent events. Moreover, the
probability that a single recovery M [j] fails is the complement of the probability that a(j)

is 1-sparse, that is, assuming a has r � 1 nonzero coordinates:

Pr[FAILURE] =
mY

j=1

�
1� r2�j

(1� 2

�j
)

r�1

�
⇡

mY

j=1

⇣
1� r2�je�r2�j

⌘
.

Theorem 2. If 5  log

2

r  m� 5, then Pr[FAILURE]  0.31, for Variant (b).

Proof (sketch). It is easy to see that the lowest probabilities of failure concentrate around
j such that 2j  r < 2

j+1. Letting q = r/2blog2 rc, it holds that

Pr[FAILURE] 
5Y

k=�5

⇣
1� q2ke�q2k

⌘
.

Note that 1  q < 2. In this interval, all factors 1� q2ke�q2k are either monotonically in-
creasing or decreasing. Analyzing their global maxima, we arrive at a maximum product
of approximately 0.3071, therefore Pr[FAILURE]  0.31. ⌅

This result shows that, as n grows, choosing m = 5+dlog
2

ne is enough to ensure
a constant upper bound on the probability of failure. Furthermore, to ensure a success
probability of at least 1� �, it is sufficient to run dlog

0.31 �e instances of the algorithm.

4. Empirical evaluation and outlook

In order to assess the algorithms behavior in a real implementation, an experiment was
set up. Both variants were implemented and tested with a vector of size n = 4096

and increasing values of r. We tested both a correctly sized (i.e., for m = 17) and an
undersized instance of the `

0

-sampling algorithm. The empirical cumulative distribution
was also recorded. The experiment was run 100 000 times and the mean value for each
data point is reported in Figure 1.
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Figure 1. Failure rate and cumulative distribution of successes.

This experiment suggests that in a correctly sized `
0

-sampling, the failure proba-
bility stays almost constant under 20%. There is little difference between Variants (a) and
(b). Furthermore, in an undersized setup, the failure rate rapidly reaches critical levels.

In conclusion, we have introduced a variant of the `
0

-sampling algorithm and
proved its failure probability to be bounded by a constant value, provided a certain
structure-size condition is met. Research is ongoing on the proof of exact probabili-
ties of failure for both algorithm variants. Future research may also include novel graph
algorithms that use `

0

-sampling as a primitive.
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