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Abstract. We propose a method for computing centralities based on shortest

paths in time-varying, multilayer, and time-varying multilayer networks using

MultiAspect Graphs (MAG). Thanks to the MAG abstraction, these high order

networks are represented in a way that is isomorphic to a directed graph. We

then show that well-known centrality algorithms can be adapted to the MAG

environment in a straightforward manner. Moreover, we show that, by using this

representation, pitfalls usually associated with spurious paths resulting from

aggregation in time-varying and multilayer networks can be avoided.

1. Introduction

In this paper, we discuss notions of centrality in high order networks. A high order net-
work is any network that has additional structures, such as, layers, time representations,
or any other structure with similar properties. A high order network is not restricted to
have only one of the mentioned structures, as it is possible to create networks that are
layered and time-varying, or even layered networks with multiple time structures rep-
resenting a multi-scale time structure. In this paper, we represent high order networks
by means of MultiAspect Graphs (MAGs) [Wehmuth et al. 2016, Wehmuth et al. 2017].
MAGs are an abstraction that can be used to represent time-varying, multilayer, com-
bined time-varying-multilayer, or even higher order graphs. In a MAG, each inde-
pendent structure of a high order network is represented by an aspect. In a MAG,
aspects are used to represent the vertices set, layer set, time instants set, and so on.
In [Wehmuth et al. 2016], MAGs are shown to be isomorphic to an object composed of a
directed graph and one tuple. Algebraic representations and basic algorithms for MAGs
are investigated in [Wehmuth et al. 2017]. These previous works pave the way for the
notions of centralities in high order networks introduced here. In particular, we focus
on shortest path centralities, since they are widely applied on complex network analysis
and relatively straightforward to interpret. Moreover, we show that by using the pro-
posed method, pitfalls usually associated with aggregation in time-varying and multilayer
networks can be avoided. These aggregation side-effects are well-known in the liter-
ature of multilayer/time-varying networks [Pan and Saramäki 2011, Nicosia et al. 2012,
Ribeiro et al. 2013, Kivela et al. 2014, De Domenico et al. 2016] and are manifested as
additional paths that do not exist in the original network, or as additional shortest paths
that also do not exist in the original networks. The presence of these artifacts on the
aggregated network causes the shortest path based centrality algorithms to include these
shortest paths into the calculation, leading to spurious results that are not consistent to the
original network.



2. MultiAspect Graphs (MAGs)
We define a MAG as H “ pA,Eq, where E is a set of edges and A is a finite list of sets,
each of which is called an aspect. Each aspect � P A is a finite set, and the number of
aspects p “ |A| is called the order of H . Each edge e P E is a tuple with 2 ˆ p elements.
All edges are constructed so that they are of the form pa1, . . . , ap, b1, . . . , bpq, where a1, b1
are elements of the first aspect of H , a2, b2 are elements of the second aspect of H , and
so on, until ap, bp which are elements of the p-th aspect of H . As a matter of notation, we
say that ApHq is the aspect list of MAG H and ApHqrns is the n-th aspect of MAG H .
We also define the set

VpHq “
p°

n“1

ApHqrns, (1)

which is the Cartesian product of all the p aspects of the MAG H . We call the elements
v P VpHq composite vertices. Note that each composite vertex v P VpHq has the form
pa1, . . . , apq. Therefore, there is a close relation between MAG edges and pairs of com-
posite vertices, since pa1, . . . , ap, b1, . . . , bpq „ pv,uq “ ppa1, . . . , apq, pb1, . . . , bpqq, so
that v “ pa1, . . . , apq and u “ pb1, . . . , bpq. From this relation between MAG edges and
pairs of composite vertices, it is possible to build a directed graph of composite vertices,
which is shown to be isomorphic to the MAG in [Wehmuth et al. 2016].

As a consequence of the isomorphism between MAGs and a directed graph, we
then define the function

g : pApHq, EpHqq Ñ pVpHq,VpHq
°

VpHqq (2)

H fiÑ pVpHq, pEpHqq,

which maps every MAG H to its isomorphic directed graph gpHq. Further, we define the
set of functions

⇡i : VpHq Ñ ApHqris (3)
pa1, a2, . . . , apq fiÑ ai,

which extracts the i-th element of a composite vertex tuple.

Note that by the definition of gpHq in Expression 2, the vertices of the directed
graph gpHq are tuples with 2 ˆ p elements. It is also possible, if desired, to have a
more traditional graph representation where the vertices are simply points of a set with
no additional meaning. In this case, the directed graph has to be complemented by a
companion tuple, which allows the association of each vertex with its original MAG tu-
ple. This companion tuple is a tuple with p elements, where each element 0 † i § p
is given as |ApHqris|, the number of elements of the i-th aspect. Further details re-
garding the construction and usage of the companion tuple of a MAG can be found
in [Wehmuth et al. 2017].

2.1. MAG sub-determination

A MAG sub-determination is a generalization of the aggregation applied to high order
networks, in which layers or time instants can be aggregated, resulting in a traditional
graph. Since a high order network can be represented by a MAG with 2 or more aspects,



a sub-determination can be performed in more ways than the classic aggregation. The for-
mal definition of MAG sub-determination can be found in [Wehmuth et al. 2016]. As an
example, consider a MAG with two aspects, where the first aspect is a set of geographic
localities and the second aspect is a set of layers. Such structure could be used, for in-
stance, to represent a multi-modal urban transportation system, where the layers represent
the distinct transportation modes (e.g. Bus, Subway, Ferry) and geographic location rep-
resent the stations. A possible sub-determination of such MAG, can be the aggregation
upon the stations, which is a classic directed graph.

3. Centralities in high order networks
In graph theory and network analysis, a centrality can be understood as an indicator of
the relative importance of the vertices or edges on the graph under analysis. Formally, it
follows that for a given graph G “ pV,Eq, a vertex centrality Cv can be seen as a function
from the set of vertices of a graph to a set of nonnegative real numbers, i.e.

Cv : V pGq Ñ R` §
t0u, (4)

where V pGq is the vertex set of the graph G. Note that Function 4 induces a linear
order relation upon its domain, which can, in turn, be understood as a centrality notion.
The adopted centrality function should then properly reflect the kind of vertex relative
importance to be expressed by the centrality notion. Similarly, edge centralities may be
defined to reflect the relative importance of an edge.

For instance, the vertex betweenness centrality [Freeman 1977] is defined as

CBpvq “
ÿ

s,tPV pGq

�ps, t{vq
�ps, tq , (5)

where V pGq is the the vertex set of the graph G, s, t P V pGq are vertices of the graph
G, v P V pGq is the vertex for which the centrality is calculated, �ps, tq is the number of
shortest paths connecting vertices s and t, and �ps, t{vq is the number of shortest paths
from s to t which pass through vertex v. If calculated for each v P V pGq, Equation 5 can
be seen as a possible implementation of Function 4.

3.1. Extending the centrality notion to MAGs
The evaluation of edge centralities in a MAG can be done in a straightforward way using
the MAG full representation. Since this representation is a traditional directed graph in
which the vertices are a subset of the composite vertices set and it carries all the edges of
the MAG, it thus preserves the topological properties (i.e., their adjacency properties). It
follows that edge centralities can be computed using the same methods applied to tradi-
tional directed graphs.

However, the evaluation of vertex centralities in MAGs is more complex than
in a traditional graph. The first difference to be considered is that a MAG can be
sub-determined and at the limit any aspect element can become a vertex. Never-
theless, the full representation of a MAG, which is shown to be isomorphic to the
MAG [Wehmuth et al. 2016], is a directed graph. Hence, vertex centralities in a MAG
can be defined in terms of the composite vertices present on the MAG, as well as, in



terms of any sub-determination of the composite vertices. Moreover, it is possible to find
the shortest paths necessary for centrality calculation in the MAG full representation and
performing the sub-determination in a later step. This assures that only the paths present
in the full MAG representation will be considered in the centrality calculation, leading to
the conclusion that the additional paths created by the sub-determination process will not
be considered in the calculation.

4. Conclusion
In this paper, we discuss the implementation of shortest path based centralities for MAGs.
Since MAGs are isomorphic to directed graphs added with a tuple, it follows that well-
known centrality algorithms can be adapted for the MAG environment. Further, due to the
structure of MAGs, it follows that centralities can also be calculated in sub-determined
form. We show that the sub-determined centrality algorithms use only valid paths present
on the MAG, making them different from using the traditional (not sub-determined) algo-
rithm upon a sub-determined MAG.

As with the well-known centrality algorithms for directed graphs, MAG central-
ity algorithms can be adapted in various ways, such as different distance definitions, re-
stricted ranges, weighted graphs, and so on. We also show that these adaptations can
be ported to MAG algorithms in a similar way as the traditional algorithms themselves
are adapted for the MAG environment. Finally, as an additional contribution, we make a
python implementation of the algorithms discussed in this paper publicly available.1
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