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Abstract. We study emergent information in populations of randomly generated
networked computable systems that follow a Susceptible-Infected-Susceptible
contagion (or infection) model of imitation of the fittest neighbor. These net-
works have a scale-free degree distribution in the form of a power-law following
the Barabási-Albert model. We show that there is a lower bound for the station-
ary prevalence (or average density of infected nodes) that triggers an unlimited
increase of the expected emergent algorithmic complexity (or information) of a
node as the population size grows.

1. Introduction

The general scope of this work involves complex systems, complex networks, informa-
tion theory, and computability theory. In particular, we aim at studying the general prob-
lem of emergence of complexity or information when complex systems are networked
compared with when they are isolated. This issue has a pervasive importance in the lit-
erature about complex systems with applications on investigating systemic properties of
biological, economical, or social systems. Following a theoretical approach on this sub-
ject, we present a study on the emergence of irreducible information in networked com-
putable systems that follow an information-sharing (or communication) protocol based
on contagion or infection models, as described in [Pastor-Satorras and Vespignani 2001a,
Pastor-Satorras and Vespignani 2001b, Pastor-Satorras and Vespignani 2002]. As sup-
ported by these references, such spreading models, using the approach from complex
networks, have been shown to be relevant to study epidemic and disease spreading, com-
puter virus infections, or the spreading of polluting agents. Consequently, the study of
such systems has helped on immunization strategies, epidemiology, or pollution control.

Nevertheless, instead of focusing on the pathological properties of such com-
plex networks’ contagion dynamics, we show a preliminary result on how such conta-
gion dynamics might trigger an unlimited potential of optimization through diffusion.
That is, diffusing the best solution (or the largest integer when one uses the Busy
Beaver Game [Abrahão et al. 2017] as a toy model) through the network may trigger
an unlimited increase of expected emergent algorithmic information of the nodes as
the randomly generated population of computable systems (i.e., nodes) grows. Thus,
we aim at mathematically investigating under which conditions this phenomenon is
expected to happen. For this purpose, we use the theoretical framework for net-
worked computable systems developed in [Abrahão et al. 2017] and the network model
studied in [Pastor-Satorras and Vespignani 2001a, Pastor-Satorras and Vespignani 2001b,
Pastor-Satorras and Vespignani 2002].



As a toy model, such theoretical approach to the study of emergence of complex-
ity or information in networked computable systems may help understand and establish
foundational properties on why an information dynamics within a system displaying syn-
ergistic or emergent behavior might be advantageous from a computational, evolutionary,
or game-theoretical point of view. Moreover, as it is our goal to suggest in the present
work, these phenomena may be also related to infection dynamics (either from computer
viruses or diseases) and scale-free networks.

2. Model

We define a model for randomly generated Turing machines that are networked
with a scale-free degree distribution that obeys a power law of the form P (k) ⇠
2m2 k�3. The topology and construction of the networks are defined by a ran-
dom process connecting new nodes under a probability distribution given by pref-
erential attachment as in [Barabási et al. 1999, Barabási and Bonabeau 2003]. That
is, new nodes are more likely to establish connections to higher degree nodes.
The diffusion or “infection” scheme is ruled by the Susceptible-Infected-Susceptible
model (SIS), in which susceptible nodes have a constant probability ⌫ of being “in-
fected” by an “infected” neighbor and an “infected” node has a constant probability
� of becoming “cured”. We also assume, as in [Pastor-Satorras and Vespignani 2001a,
Pastor-Satorras and Vespignani 2001b, Pastor-Satorras and Vespignani 2002], that the
prevalence of “infected” nodes (i.e., the average density of “infected” nodes) becomes
stationary after sufficient time.

However, nodes are now Turing machines that can send and receive informa-
tion (partial outputs) as each node runs its computations until returning a final out-
put. We have defined this population of randomly generated Turing machines and a
more general mathematical model for networked computable systems which we have
called as algorithmic networks [Abrahão 2016, Abrahão et al. 2017]. This population
plays the Busy Beaver Imitation Game (BBIG) in which each node always imitates
the fittest neighbor only. However, differently from the one in [Abrahão et al. 2017],
we here present a variation on the information-sharing protocol. The difference in
respect to this previous work comes from allowing nodes to become “cured” (with
rate �). Besides, now nodes also get “infected” with rate ⌫ — which may have
a different value from 1 — while in [Abrahão et al. 2017] one has that ⌫ = 1 al-
ways holds. While still playing a Busy Beaver Imitation Game, susceptible nodes
follow a rule of imitating the neighbor that had output the largest integer, but they
follow this rule with probability ⌫. Thus, the effective spreading rate � = ⌫/�
defined in [Pastor-Satorras and Vespignani 2001a, Pastor-Satorras and Vespignani 2001b,
Pastor-Satorras and Vespignani 2002] assumes a direct interpretation of the rate in which
the imitation-of-the-fittest protocol [Abrahão et al. 2017] was applied on a node—and
this is the reason why we are using the words “infection” and “cure” between quotation
marks.

3. Results

Our proofs follow mainly from information theory, computability theory, and graph the-
ory applied on a variation on the information-sharing (communication) protocol of the
model in [Abrahão et al. 2017]. From this model, we have proven results for general



dynamic networks and for dynamic networks with small diameter, i.e., O(log(N)) com-
pared to the network size N . We have shown that there are topological conditions that
trigger a phase transition in which eventually the algorithmic network NBB begins to
produce an unlimited amount of bits of emergent algorithmic complexity (i.e., emergent
algorithmic information). These conditions come from a positive trade-off between the
average diffusion density and the number of cycles (or communication rounds). There-
fore, the diffusion power of a dynamic network has proven to be paramount with the
purpose of optimizing the average fitness/payoff of an algorithmic network that plays the
Busy Beaver Imitation Game. Besides, this diffusion power may come either from the
cover time [Costa et al. 2015] or from a small diameter compared to the network size.

Therefore, our developed proofs1 for a network following the SIS diffusion model,
as in [Pastor-Satorras and Vespignani 2001a, Pastor-Satorras and Vespignani 2001b,
Pastor-Satorras and Vespignani 2002], also stems from the main idea of combining an
estimation of a lower bound for the average algorithmic complexity/information of
a networked node and an estimation of an upper bound for the expected algorithmic
complexity/information of an isolated node. The estimation of the latter still comes
from the strong law of large numbers, Gibb’s inequality, and algorithmic information
theory applied on the randomly generated population. However, now the estimation
of the former comes from the SIS model with a stationary prevalence (i.e., the av-
erage density of infected nodes), which gives directly this lower bound by the fact
that the prevalence ⇢ ⇠ 2 exp(�1/m�) in [Pastor-Satorras and Vespignani 2001a,
Pastor-Satorras and Vespignani 2001b, Pastor-Satorras and Vespignani 2002] becomes
equal to the average diffusion density ⌧E in [Abrahão et al. 2017].

Thus, let condition ⌧E|c(N)
t0 ⇠ 2 exp(�1/m�) > ⌦(w, c(N)) holds where c(N)

is an upper bound for the time in which the network achieves stationary prevalence (as
in [Pastor-Satorras and Vespignani 2001b, Pastor-Satorras and Vespignani 2002,
Pastor-Satorras and Vespignani 2001a]). Additionally, we have that c(N) is a com-
putable function of the network size N 2, t0 is the first time instant, w is the network
input available to every node at the beginning of the first cycle, and ⌦(w, c(N)) is the
probability that a node (i.e., a Turing machine) halts, with w as initial input, in every cycle
until the last cycle c(N). Note that ⌦(w, c(N)) is a value that depends only on the chosen
self-delimiting programming language in which one defines a universal Turing machine.
Then, one can prove that the expected emergent algorithmic complexity/information of a
node goes to infinity as the network size (i.e., the population size) N goes to infinity.

In other words, the average irreducible information that emerges when nodes are
networked, compared with when they are isolated, is expected to always increase for large
enough populations of randomly generated Turing machines that compute during  c(N)

cycles (or communication rounds). Moreover, since it is an emergent phenomenon that
arises depending only on the network/population size, one can show that such scale-free
networks of randomly generated Turing machines are also expected to display, for large
enough populations, a complexity/information phase transition, which we have called
expected emergent open-endedness [Abrahão et al. 2017].

1The article presenting these and other results and complete and extended versions of these proofs is
available at https://doi.org/10.5281/zenodo.1228505

2In fact, as a function of NC , where C is a constant that may have a value  1.



4. Conclusions

First, we have defined a family of Barabási-Albert scale-free networks with a power
law on the degree distribution of the form P (k) ⇠ 2m2 k�3 that follow a contagion
(or infection) dynamics described by the Susceptible-Infected-Susceptible model
as in [Pastor-Satorras and Vespignani 2001a, Pastor-Satorras and Vespignani 2001b,
Pastor-Satorras and Vespignani 2002]. Their set of nodes are randomly generated Turing
machines. Additionally, every node plays the SIS Busy Beaver Imitation Game, which
ensures that each node always imitates the fittest neighbor whenever an “infection”
would occur with probability ⌫. Nodes also may return to its initial partial output—being
“cured”—with probability �.

Then, we have shown that, for large enough values of m�, if the time for achiev-
ing a stationary prevalence of “infected” nodes ⇢ ⇠ 2 exp(�1/m�) is upper bounded
by a value given by a computable function of the network (or population) size N , then
these networks of randomly generated Turing machines will have the property of ex-
pected emergent open-endedness for large enough network/population sizes. That is, the
expected emergent algorithmic complexity/information of a node will eventually start to
increase undefinitely as the population grows. Thus, this characterizes the complexity (or
information) phase transition introduced in [Abrahão et al. 2017].
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