Online Circle and Sphere Packing”
Carla Negri Lintzmayer', Flavio Keidi Miyazawa?, Eduardo Candido Xavier>

!Center for Mathematics, Computation and Cognition — Federal University of ABC
Av. dos Estados 5001, Santo André, SP, Brazil

Institute of Computing — University of Campinas
Av. Albert Einstein 1251, Campinas, SP, Brazil

carla.negri@ufabc.edu.br, {fkm, eduardo}@ic .unicamp.br

Abstract. In the Online Circle Packing in Squares, circles arrive one at a time
and we need to pack them into the minimum number of unit square bins. We
improve the previous best-known competitive ratio for the bounded space ver-
sion from 2.439 to 2.3536 and we also give an unbounded space algorithm. Our
algorithms also apply to the Online Circle Packing in Isosceles Right Triangles
and Online Sphere Packing in Cubes, for which no previous results were known.

1. Introduction

We consider the Online Circle Packing in Squares, Online Circle Packing in Isosceles
Right Triangles, and Online Sphere Packing in Cubes problems. They receive an online
sequence of circles/spheres of different radii and the goal is to pack them into the mini-
mum number of unit squares, isosceles right triangles of leg length one, and unit cubes,
respectively. By packing we mean that two circles/spheres do not overlap and each one
is totally contained in a bin. As applications we can mention origami design, crystal-
lography, error-correcting codes, coverage of a geographical area with cell transmitters,
storage of cylindrical barrels, and packaging bottles or cans [Szabd et al. 2007].

In online packing problems, one item arrives at a time and must be promptly
packed, without knowledge of further items. Also, after packing an item, it cannot be
moved to another bin. At any moment a bin is open or closed: we can only pack items into
open bins and, once a bin is closed, it cannot be opened again. The algorithms can have
bounded space, when the number of open bins is bounded by a constant, or unbounded
space, when there is no guarantee on this number. Usually, items cannot be reorganized,
but our unbounded space algorithms may do this on a constant number of items.

Several works consider items to be squares or rectangles [Christensen et al. 2017],
but the Online Circle Packing in Squares was considered only in [Hokama et al. 2016],
who showed a lower bound of 2.292 on the competitive ratio of any bounded space al-
gorithm and gave one with asymptotic competitive ratio 2.439. Offline Circle Packing in
Squares was considered in [Miyazawa et al. 2016] and there are several results for pack-
ing circles or spheres of same radii [Szabé et al. 2007, Tatarevic 2015].

We show bounded and unbounded space algorithms which work for our three
problems. The bounded space ones are based on the one given in [Hokama et al. 2016],

*This work was supported by Sao Paulo Research Foundation (grants 2016/14132-4, 2015/11937-9,
2016/01860-1, 2016/23552-7) and National Counsel of Technological and Scientific Development (grants
306358/2014-0, 311499/2014-7, and 425340/2016-3).



but they have a simpler analysis, we improved the occupation ratio for the class of small
circles, we subdivide the bins in a simpler way, and we used another method to find the
numerical results. The unbounded space algorithms are a modification of the bounded
space ones using an idea presented in [Epstein 2010]. We also give lower bounds on the
competitive ratio of any bounded space algorithm for Online Circle Packing in Isosceles
Right Triangles and Online Sphere Packing in Cubes. Due to space constraints, in the
next section we only describe our algorithms for Online Circle Packing in Squares. The
same algorithms, with relatively minor changes work for the other two problems!'.

2. Online Circle Packing in Squares

For an integer M given as a parameter, a circle of radius r is large if » > 2/M and
it is small if r < 2/M. Large and small circles are packed separately, into Lbins and
Sbins, respectively, which are, nonetheless, unit squares. The only difference between the
bounded and unbounded space algorithm is how they pack some of the large circles.

For an integer © > 1, let p;* be the largest value such that ¢ circles of radius p;*
can be packed into a unit square. Let p; be p;*, if © < 30, or the best-known lower bound
for p;x, if 30 < i < 9996 [Specht ]. Let K € Z be such that px1 < 2/M < pg. A
large circle of radius 7 has type ¢, for 1 < ¢ < K, if p;1; < r < p;, or it has type K,
if 2/M < r < pg. We denote a large circle of type i as I;. Let C' € 7Z be a parameter.
Given a small circle of radius r, we find the largest integer p such that C?r < 2/M. We
then classify such circle as type (¢,p) if 2/(i + 1) < CPr < 2/i, where M < i < CM.

The hexagonal packing is the densest one for circles of equal radii and we will use
it to pack small circles. For each i, with M < ¢ < C'M, an Sbin is of type ¢ if it is used to
pack small circles of type (¢, p), for any p > 0. We keep at most one Sbin of type i open at
atime. A ¢-bin(i, p) is a square of side length 1/CP*!, When an Sbin of type i is opened,
it is divided into C? g-bins(i, 0). A g-bin(i, p) is either subdivided into C? q-bins (i, p+ 1)
or it is tiled with hexagons of side 4/(CPiv/3) to pack small items of type (i, p) (because
a circle of radius at most r fits into a hexagon of side length 2r/1/3). Note that we must
have 1/CP™! > 2/(iCP) for this to work, but since i < C'M, it suffices to choose M > 2.

When a small item of type (i, p) arrives, the algorithms will simply try to pack
it into a hexagon of a g-bin(é, p). If there is no such hexagon, they will find an empty
g-bin(z, p’) (not tiled yet) with the largest p’ such that p’ < p and subdivide it, until a
g-bin(7, p) is found (at which point it will be tiled). Next theorem shows the occupation
ratio of a closed Sbin, which is the minimum total area occupied by the circles packed in
such bin. Parameter C' is chosen to be 5 because it maximizes this ratio.

Theorem 1 The occupation ratio of a closed Sbin of type i, for M < i < 5M, is at least

551 (1 _ 431 18.48) T M?
600 M M2 ) /12 (M+1)%°

Now for packing large circles, since pgggs < 0.005076143 and p; < pgggs for
i < 9996, we chose M = 360, which makes 2/M < 0.005555556. Thus, we can find
K such that pr1 < 2/M < pg, and so we can classify all large items. For each i, with
1 <7 < K, an Lbin is of type ¢ if it packs large circles of type i. At most one Lbin of
type ¢ is kept open at a time. When an Lbin of type ¢ is opened, it is divided into i c-bins,
which are circles of radii p;. When an I; arrives, it is either packed into an empty c-bin

'A full version is available at https://arxiv.org/abs/1708.08906.



or the current Lbin of type 7 (if any) is closed and a new one is opened. Note that at most
K Lbins are kept open by the algorithm at any given time. Together with the (C' — 1)M
Sbins, we can see that this algorithm has bounded space. Furthermore, note that each
closed Lbin of type i has occupation ratio of at least imp?, ;.

The analysis of the competitive ratio uses the weighting method [Epstein 2010],
in which we show a weighting function w over the items such that the sum of weights of
items in any bin is at least 1, except for a constant number of bins. Afterwards, we find
every feasible configuration, i.e., sets of items that can be packed into a bin, calculate their
sum of weights, and find the supremum [ of such sums. As a result, the asymptotic com-
petitive ratio of the algorithm is bounded from above by 3. However, it is not reasonable
to list every possible feasible configuration, so we use the following fact. Consider a bin
of maximum weight with some known-circles Z' C Z whose sum of weights is W and
sum of areas is A, and let OR be a lower bound on the occupation ratio of the unknown
circles of the bin (in Z\Z"). If the weighting function is such that the weight of a circle
i ¢ I’ of area a(7) is at most a(7) /OR, then the total sum of weights in such bin is at most
W + (1 — A)/OR. With this, we can find only a few configurations and the lower bound
on the occupation ratio of circles that are not on them, in order to find an upper bound on
the asymptotic competitive ratio of our algorithms. For that, we use a two-phase program.
The first phase uses constraint programming to give a set F of feasible configurations that
contain only large circles. Each configuration Z € F is associated with an integer f(Z)
which indicates that all large circles from type 1 to f(Z) were tested to be part of Z. In the
second phase the idea is to add circles of type greater than f(Z) in the remaining space
of the bin by using a criterion of space: if the circle’s area is at most the remaining area
of the bin, such circle will be considered. For that we use an integer programming which
simulates a knapsack problem. We may create an infeasible configuration, but this is not
an obstacle since our goal is to find a configuration with maximum total weight. This
two-phase program is used in the proofs of Theorems 2 and 3.

At last, we define w(I;) = 1, so a closed Lbin of type i has total weight " i 7=

1. Let OR = 231 (1 — 44 4 18 48) = M Forasmall circle ¢ of type (i, p) and area

600 M MU iz (M+1)2
a(c), we define w(c) = %(g , 50 a closed Sbin B of type i has total weight }_ . ‘g; =

5ra(B) > 1, where a(B) is the sum of areas of items in B and, according to Theorem 1,

a(B) > OR. Theorem 2 concludes with the asymptotic competitive ratio of the algorithm.

Theorem 2 The algorithm for packing circles in squares with bounded space has asymp-
totic competitive ratio strictly below 2.3536.

Packing large circles in the unbounded space algorithm follows an idea
of [Epstein 2010]. A waiting bin packs either one I; with one I, (the /; at the left bottom
corner and the 5 at the right top corner) or one /; with two I, (the /; centered to the left
border with one 1, at the right bottom corner and the other at the right top corner), if their
radius are related with a value D. Other circles are packed as before. The reorganization
of packed items is allowed only for ;s that are inside open waiting bins. The algorithm
has unbounded space because we cannot guarantee how many waiting bins are open.

If an [; of radius » > D arrives, then we pack it as in the bounded space algo-
rithm (one per bin). Otherwise, » < D and we pack it in an already opened waiting bin
containing either one /5 or at least one I4, if one exists, or we open a new one to pack



the /; and let it open waiting for an /5 or two ;. This last case is why we allow the
reorganization of circles I; inside waiting bins. Let v = v/2/(v/2 + 1) — D. If an I, of
radius r > +y arrives, then we pack it as in the bounded space algorithm (two per bin).
When r < ~, the circles are labeled according to their arrival so that the following steps
can be repeated at every 72 of them. If the /5 is among the first 70, then it is packed as
in the bounded space algorithm (two per bin); if it is one of the last 2, then it is packed
in a waiting bin. Let A = 3/2 — /2D + 1. If an I, of radius » > \ arrives, then we
pack it as in the bounded space algorithm (four per bin). When r» < ), the circles are
labeled according to their arrival so that the following steps are repeated at every 34 of
them. If the [, is among the first 32, then we pack four per bin; if it is one of the last 2,
then it is packed in a waiting bin. Values of v and A were chosen through simple algebraic
expressions written considering the desired configurations of waiting bins. Since we need
p2 < D < p1, p3 < v < po,and p; < A < py for them to be possible, and this is true for
p2 < D < 0.331553, we fixed D = 0.325309.

To analyse the competitive ratio of this algorithm we use a generalized weighting
method [Epstein 2010]. We need to show weighting functions w; and ws whose sum
of weights of items in any bin is at least 1 on average for at least one of the functions,
except for a constant number of bins. The supremum g of the sums of weights of feasible
configurations, for both functions, is an upper bound on the asymptotic competitive ratio.

When the algorithm ends, either there are open waiting bins with 7, in which case
we apply w; over all circles, or there are not, in which case we apply ws. They differ from
w only regarding [, I, and 1, if their radii are at most D, vy, and A, respectively. If /; has
radius < D, then wy([;) = 1 and wy(1;) = 0. If 15 has radius r < -, then wy (1) = %
and wy(l5) = 2I. If I, has radius 7 < A, then w;(I;) = 2= and wy(I;) = ;. For both
functions, the sum of weights in any bin is at least 1 if we do not consider [, 5, and 1,
because this is true for w. Now consider w; was applied over such items. All waiting
bins have total weight at least 1 because they contain an /;. For every set of 72 I, we
have 70 of them packed into 35 bins and the last 2 packed into 2 waiting bins with one [;
each. Thus, the average weight of these bins is (35 (222) +2 (1 + 23)) /37 = 1. This is

similar for 7, and w,. Theorem 3 concludes our result.

Theorem 3 The algorithm for packing circles in squares with unbounded space has
asymptotic competitive ratio strictly below 2.3105.

References

Christensen, H. L., Khan, A., Pokutta, S., and Tetali, P. (2017). Approximation and online algo-
rithms for multidimensional bin packing: A survey. Computer Science Review, 24:63-79.

Epstein, L. (2010). Two-dimensional Online Bin Packing with Rotation. Theoretical Computer
Science, 411(31):2899-2911.

Hokama, P., Miyazawa, F. K., and Schouery, R. C. S. (2016). A Bounded Space Algorithm for
Online Circle Packing. Information Processing Letters, 116(5):337-342.

Miyazawa, F. K., Pedrosa, L. L. C., Schouery, R. C. S., Sviridenko, M., and Wakabayashi, Y.
(2016). Polynomial-Time Approximation Schemes for Circle and Other Packing Problems.
Algorithmica, 76(2):536-568.

Specht, E. Packomania. http://www.packomania.com/. Accessed: 2018-03-27.

Szabo, P. G., Markét, M. C., Csendes, T., Specht, E., Casado, L. G., and Garcia, 1. (2007). New

Approaches to Circle Packing in a Square. Springer Optimization and Its Applications. Springer
US, New York, USA.

Tatarevic, M. (2015). On Limits of Dense Packing of Equal Spheres in a Cube. The Electronic
Journal of Combinatorics, 22(1):35.



