O Problema da Deposição Gamma é NP-Completo

Marcelo Fonseca Faraj¹, Sebastián Urrutia¹, João Fernando Machry Sarubbi²

¹DCC – Universidade Federal de Minas Gerais (UFMG) Belo Horizonte – MG – Brasil

²DECOM – Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG) Belo Horizonte – MG – Brasil

marcelo@gmail.com, surrutia@dcc.ufmg.br, joao@decom.cefetmg.br

Abstract. Gamma Deployment is a metric to evaluate the quality of service in vehicular ad hoc networks (VANETs). Gamma Deployment Problem consists in applying that metric to minimize the amount of RSUs deployed in a VANET. In this work, we present a proof that the that problem is NP-Complete.

Resumo. Deposição Gamma é uma métrica usada para avaliar a qualidade de serviço oferecida por redes veiculares (VANETs). O Problema da Deposição Gamma consiste no emprego dessa métrica na minimização de RSUs para compor VANETs. Neste trabalho, prova-se que esse problema é NP-Completo.

1. Introdução

Deposição Gamma ($\Gamma_D\binom{\tau}{\rho}$) (SILVA et al., 2016) é uma métrica para avaliar a qualidade de serviço de deposições de RSUs em redes veículares (VANETs) a partir de seu tráfico veicular. Ele disponibiliza dois parâmetros para o arquiteto da VANET atingir seus objetivos de projeto: o tempo de intercontato τ e cobertura percentual mínima exigida ρ . Um veículo é considerado coberto pela VANET caso não permaneça mais que τ segundos sem cruzar com alguma RSU. O parâmetro ρ fixa a fração mínima de veículos a se cobrir. Embora $\Gamma_D\binom{\tau}{\rho}$ tenha sido proposta como uma métrica, sua aplicação para minimizar a deposição de RSUs define o Problema da Deposição Gamma (PDG). Silva et al. (2016) propuseram uma formulação de programação linear inteira e uma heurística determinística para o PDG. Faraj et al. (2017) propõem um algoritmo memético para o PDG. Neste trabalho, prova-se que o PDG é NP-Completo, o que era apenas uma conjectura.

2. O Problema da Deposição Gamma

Seja um passeio T_i uma sequência de vértices tal que haja aresta entre cada par de vértices consecutivos. Seja $L(T_i)$ o número de vértices (distintos ou não) em T_i e seja $T_i[j]$ o vértice na posição j de T_i , $j \in \{1, ..., L(T_i)\}$. Considere-se a operação de subtrair um conjunto R de um passeio T_i como resultando em uma coleção de subpasseios de T_i , a qual é obtida pela remoção em T_i de todos os elementos em R. Essa operação será denotada por $T_i \setminus R$, como no exemplo: $(1,7,2,3,1,4,5,6,7) \setminus \{1,5\} = \{(7,2,3),(4),(6,7)\}$.

Definição 1 (PDG). Seja G = (V, E) um grafo e $T = \{T_1, ..., T_p\}$ uma coleção de passeios em G. Seja $F: T \times \mathbb{Z}_+^* \to \mathbb{R}_+^*$ uma função associando um número positivo a cada etapa j de cada passeio $T_i \in T$, $j \in \{1, ..., L(T_i)\}$. Seja $\tau \in \mathbb{R}_+^*$, $\rho \in [0\%, 100\%]$ e $K \in \mathbb{Z}_+^*$ parâmetros adicionais ao problema. O PDG consiste em determinar se existe ou não um conjunto $R \subseteq V$ tal que $|R| \le K$ e, para pelo menos uma fração ρ dos passeios $T_i \in T$, é satisfeita a desigualdade $\sum_{c=1}^{L(C)} F(C,c) < \tau$ para todo $C \in T_i \setminus R$.

Para certificar a corretude de uma instância SIM, deve-se verificar se cada $C \in T_i \setminus R$ satisfaz $\sum_{c=1}^{L(C)} F(C,c) < \tau$, o que pode ser executado em tempo polinomial, uma vez que $|T_i \setminus R| < L(T_i)$ Assim, fica claro que o PDG pertence à classe NP. Silva et al. (2016) trataram da situação em que G possuía topologia de grade e propuseram uma discretização simples para expressar qualquer rede rodoviária como grade. Por isso, este trabalho dá um enfoque especial ao Problema da Deposição Gamma em Grades (PDGG).

3. As Demonstrações

A partir do Problema da Cobertura de Arestas por Vértices em Grafos Planares com Grau Máximo 3 (PCAVGPGM3), que é NP-Completo (GAREY; JOHNSON, 1977), será feita uma redução polinomial ao Problema da Cobertura de Caminhos por Vértices em Grades (PCCVG), não definido na literatura. Dele, faz-se uma redução polinomial para o PDGG. Seguem-se definições para os problemas intermediários utilizados nas demonstrações.

Definição 2 (PCAVGPGM3). Dado um grafo plano G = (V, E), no qual todos os vértices tem grau menor ou igual a 3, e um número inteiro positivo K, existe um conjunto $R \subseteq V$ tal que todas as arestas em E têm pelo menos uma extremidade em R e $|R| \leq K$? **Definição 3** (PCCVG). Dada uma grade G = (V, E), uma coleção S de caminhos simples em G e um número inteiro positivo K, existe um conjunto $R \subseteq V$ tal que todo caminho $P \in S$ possua ao menos um vértice de R e $|R| \leq K$?

Lema 1. O PCCVG é NP-Completo.

Demonstração. Dado um grafo plano G=(V,E) com grau máximo menor ou igual a 3 e com $K\in\mathbb{Z}_+^*$, busca-se construir uma grade G', uma coleção de caminhos S e um número $K'\in\mathbb{Z}_+^*$. Deve haver uma cobertura R de arestas por vértices em G com $|R|\leq K$ se, e somente se, houver uma cobertura R' dos caminhos em S por vértices, no grafo G'=(V',E'), com $|R'|\leq K'$. Seja $V=\{1,...,n\}$ e |E|=m.

Em uma Incorporação em Livro de um grafo G=(V,E), cada vértice é posto linearmente na espinha do livro seguindo a ordem dada por $F_V:V\to\mathbb{Z}_+^*$ e cada aresta é atribuída a uma de suas páginas por $F_E:E\to\mathbb{Z}_+^*$. Cada página é um semiplano que parte da espinha do livro. As arestas atribuídas a uma página estão nela contidas e não se tocam. Heath (1985) mostrou como incorporar qualquer grafo plano com grau máximo menor ou igual a 3 em um livro de 2 páginas polinomialmente. Na primeira etapa da nossa transformação, incorpora-se G em um livro de 2 páginas, como exemplifica a Figura 1.

Seja G'=(V',E') uma grade com $V'=\{1,...,3n\}\times\{1,...,2n-1\}$ e $E'=\{((a,b),(c,d)), \forall (a,b),(c,d)\in V': (|a-c|=1 \land b=d) \lor (a=c \land |b-d|=1)\}$. Seja $H=\{(3(F_V(v))-1,n), \forall v\in V(G)\}\subset V'$. Seja $S=\{S_1,...,S_m\}$ uma coleção com m caminhos, cada um deles subgrafo de G', correspondente a uma das arestas em E(G) e com vértices extremos contidos em H. Cada caminho de $(a,b)\in H$ para $(c,d)\in H$ é construído segundo as regras seguintes. Regra (1): Cada caminho tem uma componente vertical. Se a aresta $e\in E(G)$ correspondente for tal que $F_E(e)$ é a página esquerda, essa componente passa por vértices na coluna $n-\frac{|b-d|}{3}$. Caso contrário, na coluna $n+\frac{|b-d|}{3}$. Regra (2): Se uma página de $v\in V(G)$ contiver 1 aresta, o caminho correspondente em S tem componente horizontal iniciada no vértice $(3(f_V(v))-1,n)$ que toca a componente vertical feita na regra (1). Regra (3): Se uma página de $v\in V(G)$ contiver 2 ou 3 arestas, cada caminho correspondente deixa o vértice $(3(f_V(v))-1,n)$ em uma direção diferente (norte, sul ou horizontal) com base na regra (1), evitando cruzamento. Após passar por um vértice, o caminho prossegue horizontalmente até encontrar a componente feita na regra (1).

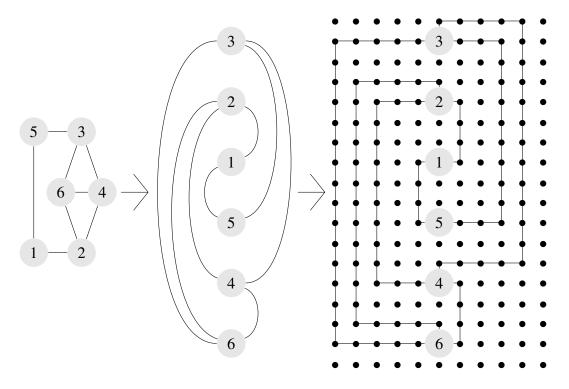


Figura 1. Incorporação de um grafo planar com grau máximo menor ou igual a 3 em um livro de 2 páginas e subsequente transformação em caminhos em grade.

Será provado que $\forall S_1, S_2 \in S, S_1 \cap S_2 \subseteq H$. Suponha-se que existam $S_1 = (u_1, ..., u_2)$ e $S_2 = (w_1, ..., w_2)$ com $S_1 \cap S_2 \not\subseteq H$ e, sem perda de generalidade, seja $F_V(u_1) < F_V(u_2)$, $F_V(w_1) < F_V(w_2)$ e $F_V(u_1) \le F_V(w_1)$. Para simplificar, serão usados os mesmos símbolos $(u_1, u_2, w_1 \text{ e } w_2)$ para se referir aos vértices extremos de S_1 e S_2 e aos vértices correspondentes em V(G). Seja o caso em que S_1 e S_2 tenham uma extremidade coincidente. Pela regra (3), os subcaminhos horizontais dessa extremidade de S_1 e S_2 ocorrem disjuntos nas três linhas em torno da extremidade correspondente, o que é sempre possível devido ao grau máximo de G. A regra (1), adicionalmente, garante que não ocorrerá intercepção em qualquer ponto de S_1 e S_2 que não pertença a H. Considere-se agora o caso em que u_1, u_2, w_1 e w_2 são vértices distintos. São disjuntos os caminhos caso $F_V(u_1)$ e $F_V(u_2)$ sejam ambos maiores ou menores do que $F_V(w_1)$ e $F_V(w_2)$. No caso em que $F_V(u_1) < F_V(w_1) < F_V(w_2) < F_V(u_2)$, não ocorre intersecção de caminhos devido à regra (1). A única opção restante é $F_V(u_1) < F_V(w_1) < F_V(w_2) < F_V(w_2)$. Nesse caso, as arestas $(u_1, u_2), (w_1, w_2) \in E(G)$ devem certamente pertencer a páginas diferentes na incorporação em livro do grafo, ou seja, $F_E(u_1, u_2) \neq F_E(w_1, w_2)$. Logo, $S_1 \cap S_2 \subseteq H$.

A Figura 1 exemplifica toda a transformação. É possível encontrar uma cobertura R' de caminhos por vértices com $|R'| \le K' = K$? No parágrafo seguinte, prova-se por absurdo que a resposta para o PCAVGPGM3 é SIM se, e somente se, também for SIM para o PCCVG em (G', S, K'). O PCCVG está em NP, pois, dado um certificado R' para uma instância SIM (G', S, K'), basta checar se $|R'| \le K'$ e se $S_i \cap R' \ne \emptyset, \forall S_i \in S$.

Suponha-se que $\exists R \subseteq V(G)$, com $|R| \leq K$, que é cobertura de arestas por vértices em (G,K) e que a resposta para o PCCVG em (G',S,K') é NÃO. Como cada vértice de H é associado biunivocamente a um vértice de V(G), é possível obter um conjunto $R' \subseteq H$ a partir dos elementos de H associados a R. Como cada caminho em S tem as extremidades em H e iguais às extremidades das arestas de E(G), R' é uma cobertura para S em G'

e tem-se $|R'| \leq K'$, o que contradiz a hipótese. Suponha-se, agora, que $\exists R' \subseteq V(G')$, com $|R'| \leq K'$, que é uma cobertura de caminhos por vértices para (G', S, K') e que a resposta para o PCAVGPGM3 em (G, K) é NÃO. Pela construção proposta, os vértices em $V(G') \setminus H$ pertencem a, no máximo, um caminho em S. Se $\exists S_i \in S$ com $S_i \cap (R' \setminus H) \neq \emptyset$, $u \in S_i \cap (R' \setminus H)$ cobre exclusivamente S_i . Logo, pode-se remover u de R' e substituí-lo por um vértice em $H \cap S_i$. Repetindo isso exaustivamente, obtém-se cobertura de caminhos por vértices $R'' \subseteq H$, |R''| = K'. Assim, pode-se resolver o PCAVGPGM3 com $R \subseteq V(G)$, |R| = K', obtendo cada vértice de V associado a R'', o que contradiz a hipótese.

Teorema 1. O PDG é NP-Completo

Demonstração. Seja G=(V,E) uma grade com $V=\{v_{ab}, \forall (a,b) \in \{1,...,m\} \times \{1,...,n\}\}$ e $E=\{(v_{ab},v_{cd}), \forall \{v_{ab},v_{cd}\} \subseteq V : (a-c=1 \land b=d) \lor (a=c \land b-d=1)\}$. Seja $S=\{S_1,...,S_p\}$ uma coleção de subgrafos de G tal que $S_i \in S$ é um caminho em G. Com $K \in \mathbb{Z}_+^*$, pode-se obter uma cobertura de caminhos por vértices $R \subseteq V$ com $|R| \le K$? Dada essa instância do PCCVG, que será referida por PCCVG(G,S,K), constrói-se a instância $PDGG(G',T,F,\tau,\rho,K')$, do PDGG. Em seguida, mostra-se que PCCVG(G,S,K) é uma instância SIM se, e somente se, $PDGG(G',T,F,\tau,\rho,K')$ também é. O PDG pertence a NP, pois um certificado R^* de SIM pode ser checado em tempo polinomial como mostrado na seção 2.

Seja G'=G, T=S, K'=K, $\tau=1$ e $\rho=100\%$. Para cada passeio $T_i\in T$, F é função definida como $F(T_i,x)=\frac{1}{L(T_i)}, \forall x\in\{1,...,L(T_i)\}$. Após essa transformação, a seguinte igualdade é válida para cada $T_i\in T$: $\sum_{c=1}^{L(T_i)}F(T_i,c)=1=\tau$ Suponha-se que $\exists R\subseteq V$ que é solução para PCCVG(G,S,K) e não para $PDGG(G',T,F,\tau,\rho,K')$. Assim, $\exists T_i\in T$ contendo subpasseio $C\in T_i\setminus R$ que satisfaça $\sum_{c=1}^{L(C)}F(C,c)\geq \tau$. Como $\sum_{c=1}^{L(T_i)}F(T_i,c)=\tau$, pode-se deduzir que $T_i\cap R=\emptyset\to S_i\cap R=\emptyset$. Logo, R não resolve PCCVG(G,S,K) já S_i não está coberto, o que é uma contradição. Seguindo, suponha-se que $\exists R\subseteq V(G')$ que é solução para $PDGG(G',T,F,\tau,\rho,K')$ mas não para PCCVG(G,S,K). Assim, há um caminho $S_i\in S$, $S_i\cap R=\emptyset$. Como $T_i=S_i$, então $T_i\cap R=\emptyset$ e $T_i\setminus R=\{T_i\}$. Logo, $\exists C\in T_i\setminus R$, $\sum_{c=1}^{L(C)}F(C,c)=\tau$, o que contradiz a hipótese de que R resolve o PDGG.

Corolário 1. O PDGG é NP-Completo.

Corolário 2. O PDGG com $\rho = 1$ é NP-Completo.

Referências

FARAJ, M. F.; SARUBBI, J. a. F. M.; SILVA, C. M. da; MARTINS, F. V. C. A hybrid genetic algorithm for deploying RSUs in VANETs based on inter-contact time. In: **Proceedings of the Genetic and Evolutionary Computation Conference Companion**. New York, NY, USA: ACM, 2017. (GECCO '17), p. 193–194. ISBN 978-1-4503-4939-0. Disponível em: \(\http://doi.acm.org/10.1145/3067695.3076032 \rangle .

GAREY, M. R.; JOHNSON, D. S. The rectilinear steiner tree problem is NP-complete. **SIAM Journal on Applied Mathematics**, SIAM, v. 32, n. 4, p. 826–834, 1977.

HEATH, L. S. **Algorithms for embedding graphs in books**. Tese (Doutorado) — University of North Carolina at Chapel Hill, 1985.

SILVA, C. M.; GUIDONI, D. L.; SOUZA, F. S.; PITANGUI, C. G.; SARUBBI, J. F.; PITSILLIDES, A. Gamma deployment: Designing the communication infrastructure in vehicular networks assuring guarantees on the V2I inter-contact time. In: IEEE. **Mobile Ad Hoc and Sensor Systems (MASS), 2016 IEEE 13th International Conference on.** [S.l.], 2016. p. 263–271.