The Hidden Binary Search Tree

Saulo Queiroz', Edimar Bauer!

! Academic Department of Informatics
Federal University of Technology (UTFPR)
Ponta Grossa, PR — Brazil

sauloqueiroz@utfpr.edu.br, edimarbauer@alunos.utfpr.edu.br

Abstract. In this paper we review and enhance the Hidden Binary Search Tree
(HBST) presented in [Queiroz 2017]. The HBST idea builds on the assumption
an n-node self-balanced tree (e.g. AVL) requires to assure O(log, n) worst-case
search, namely, comparison between keys takes constant time. Therefore the size
of each key in bits is fixed to B = O(log, n) once n is determined, otherwise the
O(1)-time comparison assumption does not hold. HBST generalizes the search-
tree property such that the position of a node in the tree results from comparing
its key against ‘ideal’ reference values associated to its ancestors. The first
ideal values comes from the mid-point of the interval 0..25. The strategy follows
recursively such that the HBST height is bounded by O(B) regardless the input
sequence of keys nor self-balancing procedures. In this paper we enhance the
HBST to enable keys with arbitrary number of bits.

1. Introduction

In a Binary Search Tree (BST) and variants thereof the ‘search-tree’ property relies on a
field of the nodes’ abstract data type to determine the position of a given key in the tree.
That definition causes BST’s height i(n) to vary depending on the values of the given n-
size input sequence of integer keys s=<k;> (0 < k; < nand 1 < i < n)suchthat h(n) =
O(n) in the worst case. Self-balanced BSTs (e.g. AVL, Red-black) decouple the h(n)
performance from s by means of self-balancing procedures. These procedures may walk
the path back from an inserted (deleted) node to the root in order to update height-related
informations and, if needed, trigger rotation(s) to ensure h(n) = O(log, n). Therefore,
self-balanced BSTs are preferred than BSTs when the asymptotic worst-case scenario is
the sole criterion. However, if n is not large enough or s ‘naturally’ causes BST’s height
to be logarithmic — as is the case of random uniform inputs — BSTs may be preferred
because of its “substantially less overhead and simpler programming” [Knuth 1998].

[Queiroz 2017] presents the Hidden Binary Search Tree (HBST), a data struc-
ture characterized by a logarithmic worst-case height and the ‘simpler programming’ of
BSTs (i.e. no self-balancing procedures). The first remark of the HBST design is that the
O(log, n) search of self-balanced BSTs results from assuming that a comparison between
keys takes constant time. This implies the number of bits B per key must be a constant
bounded to O(log, n) after n is determined. From this, the author generalizes the search-
tree property such that the position of a given key in the tree can result from comparisons
against reference values other than the key of prior inserted nodes. Relying on the as-
sumption that B is constant, HBST matches its search reference values to the sequence
of keys that ‘naturally’ causes a BST to be balanced. In this work we review the HBST
procedures (Section 2) and enhance its design to enable unbounded B (Section 3).

[8,12,16]

Figura 1. HBST built from the sequence 0,...,15, B = 4. The upper and lower
bounds intervals are computed across iterations. Search-property holds if a key
is compared against the ideal hidden reference values of its ancestors (underli-
ned values).

2. Elementary Procedures of HBST

The elementary HBST procedures exploits a widely known lesson from the design of
algorithms, namely, an algorithm whose iteration (or recursive call) takes O(1) time to
halve an n-size problem has O(log, n) complexity. In several practical scenarios, the
largest size n of a data structure is implicitly established when the programmer declares
a B-bit key field, i.e. n = 2”. From these points, HBST considers the lower and upper
bounds of the interval 0..2” to guide the insertion, search and deletion of a given input
key 0 < k; < 28 as we describe next.

Insertion and Search. If the given (sub-)tree is empty, k; is inserted as root.
Otherwise the search reference value “idealRef” is set to |(lower + upper)/2|. The
variables lower and upper are respectively set to 0 and 27 in the first iteration. If
k; < ideal Re f the insertion follows recursively to the left subtree setting upper to “ideal-
Ref”. Otherwise it follows to the right subtree updating lower to “idealRef”. The interval
[lower, upper| halves at a cost O(1) per iteration, leading to O(B) iterations in the worst-
case. An HBST built from the insertion sequence 0, 1,2, ...,15 with B = 4 is illustrated
in Fig. 1. Note that the search-tree property holds only if the keys at the left and right
subtrees of an arbitrary node r are compared against the hidden (underlined) reference
value associated to . The same idea applies to find a key in the tree as illustrated in the
recursive Algorithm 1.

Deletion. The first part of deleting a node r works just as in BST following the
hidden search strategy to find it (Algorithm 1). If r is leaf, it is removed (of course the
pointer to it is updated accordingly in the corresponding parent node). If r is non-leaf, it
can be overwritten by one of its descendants leaf node'.

3. Practical Concerns and HBST Enhanced Design

The careful reader may observe that HBST is nothing but a typical BST that ex-
ploits the constant number of bits of the key field to present an alternative search-
tree property ensuring O(B) height. For any quantity n’ < n, HBST worst-
case has B + 1 levels (i.e. 0,1,...,B) while the height of AVL and Red-Black

Lthis fixes the statement “the substitute can be any ... less than 2 children” of [Queiroz 2017].

Algorithm 1: HBST Search.

1 Function Search (root, key, lower, upper)

2 # Assumptions: B-bit keys. Possible key values: 0,1, .25 — 1.
3 # First call: lower=0, upper=n=2%.

4 if root = nill OR root — key = key then

s | return root;

6 end

7 idealRef := | (lower + upper)/2];

8 if key < idealRef then

9 ‘ return Search (root — left, key, lower, idealRef);
10 else

11 ‘ return Search (root — right, key, idealRef, upper);
12 end

are 1.4405log,(n" + 2) — 0.3277 [Knuth 1998, Adelson-Velsky and Landis 1962] and
2log,(n' + 1) [Guibas and Sedgewick 1978], respectively. For relatively small n’, the
height of self-balanced BSTs can outperform HBST’s. However, the worst-case of in-
sertion and deletion procedures might be added by rotations of those trees. Moreover,
in the worst-case the path from the root to the node being inserted/removed is traversed
twice (irrespective of rotations) to assure that balance factors (colors) of the ancestors
are updated. Thus, the worst-case of insertion/deletion in self-balanced BSTs is at le-
ast twice their respective maximum heights plus rotations. Since HBST does not need
self-balancing procedures nor rotations its actual performance compares to self-balanced
BSTs. At the same time, its programming ‘simplicity’ and maintainability compare to the
classical BST. We believe both these characteristics turn HBST very appealing for practi-
cal scenarios. Next we describe an enhanced HSBT design to handle keys with arbitrary
number of bits.

The enhanced HBST data structure consists of a sequence of HSBTs as illustrated
in Fig. 2. Given a non-negative integer key k; for insertion, deletion or search, we firstly
count the minimum number of bits B(k;) needed to represent k; in binary. This can be
done at a cost O(B(k;)) by successively dividing k; by two while the result is not zero.
In practice, these divisions can be efficiently implemented by successive right shifts. We
insert the number B(k;) in a sorted linked list. Each node of the list represents (i.e., has
a pointer to) a specific HBST where all keys can be represented with the same minimum
number of bits B(k;). For instance, keys 2 and 3 are inserted in the same HBST because
B(2) = B(3) = 2 bits. Thus, B(k;) indicates which HBST k; must be inserted into.
If B(k;) = 1 the hidden interval associated to the root node is [0, 1]. If B(k;) > 1 the
corresponding HBST interval is [25(*)~1 2B(k)[Hence, the maximum number of nodes
in the HBST of k; is np,) = 28%*) — 2Bk)=1 = 9B(k)~1 (please, remark the base case
n; = 2 keys) which yields a height of O(log,(25*)~1)) = O(B(k;)).

The worst-case time for insertions in the sorted linked list of Fig. 2 is linear on
the number of bits B(k;) of the key k;. To make the HBST linked list to grow linearly on
the number of nodes, one needs an input sequence in which each key is twice higher than
its preceding key e.g. s=<2!,22, 23 ..., 2">. In this extreme case, there are n unitary

HBSTs and the largest key needs n bits. Thus an insertion takes O(n) = O(Bjq.) Where
Bina 1s the largest key in number of bits. In the opposite case where all n keys are in a
single HBST, the size of the linked list is one (keys have the same size in bits) and the
height of the tree is O(By,4.). Accounting for the fact that a single key comparison in an
arbitrary level of the tree is O(B,,q,) rather than O(1), the overall search complexity is
O(B%,.).

maxr

Figura 2. HSBT enhanced for keys with arbitrarily number of bits B. built from
the sequence 0, .. ., 15. The first hidden interval for HSBTs with 1-bit and B(k;)-bit
keys are [0, 1] and [25(F)—1 2B(k:)[respectively.

4. Summary

We reviewed and enhanced a variation of the Binary Search Tree (BST), named Hidden
BST (HBST). Under the same assumptions of self-balanced BSTs (e.g. AVL, red-black),
HBST’s height is O(B) where B is the size of keys in bits and n is a given number of
keys. For keys with arbitrary number of bits, we show elementary O(B2,) procedures
where B,,,; is the currently known largest key in bits. Possible related topics for future
work are linear-time in-order traversal, priority queues and external memory.

Referéncias

Adelson-Velsky, G. M. and Landis, E. M. (1962). An algorithm for the organization of
information. In Proceedings of the USSR Academy of Sciences, volume 146, pages
263-266.

Guibas, L. J. and Sedgewick, R. (1978). A dichromatic framework for balanced trees. In
19th Annual Symposium on Foundations of Computer Science (sfcs 1978), pages 8-21.

Knuth, D. E. (1998). The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting
and Searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,
USA.

Queiroz, S. (2017). The hidden binary search tree: A balanced rotation-free search tree
in the AVL RAM model. CoRR, abs/1711.07746.

