
Exact and Heuristic Approaches to the Maximum Capacity
Representatives Problem

Italos Estilon da Silva de Souza1, Mauro Roberto Costa da Silva1,
Welverton Rodrigues da Silva1, Rafael C. S. Schoeury1

1Institute of Computing – University of Campinas (UNICAMP)
Caixa Postal 6176 – 13083-852 – Campinas – SP – Brazil

italosestilon@gmail.com, maurorcsc@gmail.com,

welvertonrodrigues@gmail.com, rafael@ic.unicamp.br

Abstract. This paper approaches the problem of finding the system of represen-
tatives of a family of disjoint sets. To solve this problem, three methods were
used: integer programming, branch-and-bound, and the BRKGA metaheuris-
tic. We observed that, in randomly generated instances, the branch-and-bound
algorithm was the best exact method but it was surpassed by BRKGA for large
instances.

1. Introduction
In this work, we address the problem of maximizing the sum of capacities of repre-
sentatives of disjoint sets introduced by [Bellare 1993], who showed that this problem
is NP-complete and gave some inapproximability results. Formally, the maximum ca-
pacity representatives problem (MCR) can be defined as follows: let S1, S2, . . . , Sk

be
disjoint sets. For any i 6= j, x 2 S

i

and y 2 S

j

, let c(x, y) be the nonnegative capac-
ity between x and y. Let R be a set such that 81ik

|R \ S

i

| = 1, we say that R is
a system of representatives. The capacity C

R

of a system of representatives R is given
by C

R

=

P
x,y2R c(x, y). The problem is finding R that maximizes C

R

.

One can think of an instance of this problem as an undirected graph in which the
vertex set V is

S
k

i=1 Si

and edge set E is {(u, v) | u 2 S

i

, v 2 S

j

, and i 6= j}. The
edge weights represent the capacity between the vertices and each S

i

is an independent
set. Note that this graph has the property of being k-partite complete.

Thus the problem of finding the system of representatives of maximum capacity
is equivalent to the problem of finding a maximum edge-weighted clique in a k-partite
complete graph. This is interesting because the maximum edge-weighted clique problem
is widely studied. For simplicity, we will think about instances of the MCR problem
as graphs and then, throughout this text, we will refer to sets S

i

as parts, to capacities
between elements as edge weights, and to elements of S

i

as vertices.

We have not found the MCR problem to be studied experimentally in the lit-
erature, but we link to a variant problem, the so-called minimum distance representa-
tive (MinDR) [Blanco et al. 2014].

We approached the MCR problem with integer programming, branch-and-bound,
and BRKGA, comparing these techniques.

2. Integer Programming
[Gouveia and Martins 2015] consider a version of the problem of maximum edge-
weighted clique where there are edges with negative weight. They gave the formulation

below to this problem based on [Park et al. 1996]. Let G = (V,E) be an undirected
graph. For all i 2 V , variable x

i

equals 1 if i is in the clique, otherwise x

i

equals 0. For
all i, j 2 V , variable y

ij

equals 1 if edge (i, j) is in the clique, otherwise y

ij

equals 0.

maximize
X

i,j2E

c

ij

y

ij

(1)

subject to y

ij

 x

i

, y

ij

 x

j

(i, j) 2 E (2)
x

i

+ x

j

 y

ij

+ 1 (i, j) 2 E (3)
x

i

+ x

j

 1 (i, j) /2 E (4)
x

i

2 0, 1 i 2 V (5)
y

ij

2 0, 1 (i, j) 2 E (6)

We propose to exchange constraint (4) by
P

xj2Si
x

j

= 1 for all S
i

, provided
that we already know the graph is k-partite complete and we know each part S

i

. The
formulation with constraint (4) may lead to infeasible solutions to our problem because
it does not force each solution to have exactly one vertex from each part, although an
optimal solution of the former formulation is also an optimal solution to our problem.

3. BRKGA
The biased random-key genetic algorithm (BRKGA) is an evolutionary metaheuristic for
optimization problems. This metaheuristic works with a fixed-size population composed
of p vectors (chromosomes) of randomly generated numbers in the interval [0, 1). The
population is divided into groups, the so-called elite, non-elite and mutants. For each
iteration, the best ones are kept (elite), new ones are generated by crossover (non-elite)
and a small number of mutants are introduced into the population.

The BRKGA uses a decoder to calculate the value of a chromosome
[Resende 2011]. We create a deterministic algorithm for decoding that takes as input
a chromosome and associates with it a feasible solution to the MCR problem and outputs
this solution value. Each chromosome is a real vector x 2 [0, 1)

k, where each locus is
sequentially associated to a disjoint set. Algorithm 1 presents the decoder.

Algorithm 1 Decoder algorithm
1: function DECODER(x)
2: R ;
3: for i 1, . . . , k do
4: j 1 + bx

i

· |S
i

|c
5: R R [{x}, where x is j-th element of S

i

6: return
P

x,y2R c(x, y)

In addition, we create a greedy constructive heuristic to introduce a non-
random key chromosome in the initial population. The heuristic works as follows: for
all i = 1, 2, . . . , k, the locus i is equal to (j � 1)/|S

i

|, where x is the j-th element of S
i

such that
P

y2V \Si
c(x, y) is the greatest sum of capacities.

4. Branch-and-Bound
We create an initial feasible solution by choosing for each S

i

with i = 1, 2, . . . , k

an x 2 S

i

that maximizes
P

y2V \Si
c(x, y). That is, for each set S

i

we choose the ver-
tex that have the greatest sum of edge weights.

At level l of the search tree, we choose which vertex of part S
l

will be in the
clique. Note that the search tree has depth k, the number of sets. Let � be a solution
under construction, that is, the algorithm is on level l < k, and let �

i

be the vertex
of part i in �. Let R(�) =

P
�i,�j2� c(�i

, �

j

) be the value of solution under construc-
tion �. Let opt(�) be the greatest value � can have after choose vertices for the remaining
levels l0 > l. Let ⇢(�) be the sum of weights of heaviest edges between part S

i

and S

j

for
all i, j > l

0 plus the weight of the edge between �

i

and S

j

for all i l and j > l. Note
that opt(�) ⇢(�), that is, the best solution that can be made is less or equal to the sum
of the weight of the heaviest edge that can be in a solution between each pair of parts plus
the value of the solution under construction. Algorithm 2 presents the branch-and-bound
algorithm.

Algorithm 2 Branch-and-Bound algorithm
1: �

max

 ;
2: BB(;, 1)
3: function BB(�, l)
4: if l = k then
5: if R(�) > R(�

max

) then �

max

 �

6: return
7: if ⇢(�) R(�

max

) then return
8: for all u 2 S

l

in non-increasing order by total capacity do
9: BB(� [{u}, l + 1)

5. Computational Experiments

We generated the instances used in the experiments randomly. There are three types of
instances, the ones with part sizes and weights were generated using a uniform prob-
ability distribution (“uniform”), the ones with parts of equal sizes (“similar”), and the
ones with weights generated using the normal probability distribution (“normal”). Part
sizes were chosen from the range of 1 to a maximum size using a uniform probabil-
ity distribution. Edge weights were chosen from the range of 1 to 100, for instances of
type “uniform”, and from the range of 1 to 50, for type “similar”, using a uniform prob-
ability distribution. For instances of type “normal”, edge weights were chosen using a
normal probability distribution with mean 100 and standard deviation of 2. Instances may
have 5, 10, 30 or 50 parts and we used three values for the maximum size of a part: 10, 30
and 50. We made all combinations of instance types, the number of parts and maximum
size of a part.

We implement the branch-and-bound algorithm (BB) in C++ and the ILP model
in Java using Gurobi 7.5.2. The BRKGA was implemented in C++, using the API de-
scribed and proposed in [Toso and Resende 2015]. We set parameters of BRKGA as fol-
lows: size of population p = 1000, elite set fraction p

e

= 0.16, fraction of population
to be replaced by mutants p

m

= 0.08, probability that offspring inherit an allele from
elite parent rhoe = 0.65, number of independent populations p

n

= 3 and the number of
generations gen = 300. Then we execute all instances for each algorithm with 1 hour of
timeout in a machine with Intel (R) Xeon (R) Silver 4114 CPU @ 2.20GHz, 32GB of
memory and Linux 64bits.

6. Results and Conclusions
The approach with integer programming did not lead to good results, provided that the
solver only solved six instances. In cases where the solver found solutions close to optimal
the gap was still large indicating that the solver was having difficulty to show that the
solutions found were optimal. Instances of type “similar” were harder to solve by the
ILP solver and by the branch-and-bound algorithm by the fact instances of type “similar”
have more edges and vertices than the others instances. Instances of type “normal” and
“uniform” had no significant difference in the number of vertices and edges. The branch-
and-bound algorithm performed in a similar way for instances of those types, provided
that, the number of vertices showed to be more determinative than edge weights for this
method. For the ILP solver, edge weights distribution was not a significant factor, although
it solved more instances of type “uniform” where the variance of weights is greater. The
branch-and-bound approach obtained better results than the ILP since the BB algorithm
solved sixteen instances.

The BRKGA was executed 100 times for each instance. The approach with
BRKGA found, in average, solutions very close to optimal for instances solved by the
branch-and-bound algorithm with optimality proof. For larger instances, BRKGA found
solutions better than the ones found by the branch-and-bound algorithm within very com-
petitive time, taking, in average, less than 15 seconds per instance. BRKGA found solu-
tions equal to or better than those found by the exact methods for 31 instances. We tried
to use BRKGA solutions as an initial lower bound to the branch-and-bound algorithm,
but it was not able to prove optimality for those solutions, although it did not find better
solutions before reaching the time limit. We conclude that BRKGA is a good approach
for this problem given that it was better than exact methods for large instances. Provided
that the exact methods did not lead to good results, we plan to analyze the use of other
heuristics approaches as future work.

This project was supported by the São Paulo Research Founda-
tion (FAPESP) grants #2014/25892-4, #2015/11937-9, #2016/23552-7, #2016/01860-1
and #2017/23343-1; and the Brazilian National Council For Scientific and Technological
Development (CNPq) grants #311499/2014-7, #425340/2016-3 and #304856/2017-7.

References
[Bellare 1993] Bellare, M. (1993). Interactive proofs and approximation: reductions from

two provers in one round. In Theory and Computing Systems, 1993., Proceedings of
the 2nd Israel Symposium on the, pages 266–274. IEEE.

[Blanco et al. 2014] Blanco, R., Boldi, P., and Marino, A. (2014). Entity-linking via graph-
distance minimization. ArXiv e-prints.

[Gouveia and Martins 2015] Gouveia, L. and Martins, P. (2015). Solving the maximum
edge-weight clique problem in sparse graphs with compact formulations. EURO Jour-
nal on Computational Optimization, 3(1):1–30.

[Park et al. 1996] Park, K., Lee, K., and Park, S. (1996). An extended formulation approach
to the edge-weighted maximal clique problem. European Journal of Operational Re-
search, 95(3):671–682.

[Resende 2011] Resende, M. G. (2011). Introdução aos algoritmos genéticos de chaves
aleatórias viciadas. Simpósio Brasileiro de Pesquisa Operacional, pages 3680–3691.

[Toso and Resende 2015] Toso, R. and Resende, M. (2015). A c++application program-
ming interface for biased random-key genetic algorithms. Optimization Methods and
Software, 30(1):81–93.

	Introduction
	Integer Programming
	BRKGA
	Branch-and-Bound
	Computational Experiments
	Results and Conclusions

