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Abstract. Let D be a digraph. A path partition P of D is a collection of paths

such that {V (P ) : P 2 P} is a partition of V (D). We say D is ↵-diperfect if

for every maximum stable set S of D there exists a path partition P of D such

that |S \ V (P )| = 1 for all P 2 P and this property holds for every induced

subdigraph of D. A digraph C is an anti-directed odd cycle if (i) the underlying

graph of C is a cycle x1x2 · · · x2k+1x1, where k � 2, (ii) the longest path in C
has length 2, and (iii) each of the vertices x1, x2, x3, x4, x6, x8, . . . , x2k is either

a source or a sink. Berge (1982) conjectured that a digraph D is ↵-diperfect

if, and only if, D contains no induced anti-directed odd cycle. In this work,

we verify this conjecture for digraphs whose underlying graph is series-parallel

and for in-semicomplete digraphs.

1. Introduction
All digraphs considered in this text are finite and contain neither loops nor parallel arcs
(but they may contain cycles of length 2). For terminology not defined here, we refer
the reader to [Bondy and Murty 2008]. Given a digraph D, we denote its vertex set by
V (D) and its arc set by A(D). A pair of vertices u, v 2 V (D) is adjacent in D if
{uv, vu}\A(D) 6= ;. A stable set of a digraph D is a set S ✓ V (D) such that no pair of
distinct vertices u, v 2 S is adjacent in D. The stability number of D, denoted by ↵(D),
is the size of the largest stable set in D. A path P in D is a sequence v0v1 · · · v` of distinct
vertices of D such that vivi+1 2 A(D) for i = 0, . . . , `� 1. A path partition P of D is a
collection of paths such that {V (P ) : P 2 P} is a partition of V (D).

In 1960, Gallai and Milgram [Gallai and Milgram 1960] showed that the size of a
minimum path partition of a digraph D is at most the stability number of D. Although
various proofs of this result were known at the early 80’s, no proof implied the existence
of a maximum stable set S and a path partition P such that |S \ V (P )| = 1 for every
P 2 P (later, Meyniel [Meyniel 1989] showed that there exist digraphs where such stable
set and partition does not exist). Thinking about this matter, Berge [Berge 1982] proposed
the class of ↵-diperfect digraphs. Given a digraph D and a stable set S of D, an S-path

partition of D is a path partition P such that |S \ V (P )| = 1 for all P 2 P . We say that
D satisfies the ↵-property if, for every maximum stable set S of D, there exists an S-path
partition of D, and we say that D is ↵-diperfect if every induced subdigraph of D satisfies
the ↵-property.
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Given a digraph D, we denote its underlying graph by U(D) (in this text we
always consider that the underlying graph is simple). A digraph C is an anti-directed

odd cycle if (i) U(C) = x1x2 · · · x2k+1x1 is a cycle, where k � 2, (ii) the longest path
in C has length 2, and (iii) each of the vertices x1, x2, x3, x4, x6, x8, . . . , x2k is either a
source or a sink. Berge [Berge 1982] showed that anti-directed odd cycles do not satisfy
the ↵-property, and hence are not ↵-diperfect, which led him to conjecture the following
characterization for ↵-diperfect digraphs. Note that it is strikingly similar to Berge’s
conjecture on perfect graphs – nowadays known as the Strong Perfect Graph Theorem
(see Theorem 1 [Chudnovsky et al. 2006]).

Conjecture 1 (Berge, 1982) A digraph D is ↵-diperfect if, and only if, D contains no

induced anti-directed odd cycle.

Theorem 1 (Chudnovsky, Robertson, Seymour, and Thomas, 2006) A graph G is

perfect if, and only if, neither G nor its complement contain an induced odd cycle of

order at least 5.

By showing that anti-directed odd cycles do not satisfy the ↵-property, Berge
ended up showing the necessity of Conjecture 1. So the open problem in this conjec-
ture is to verify its sufficiency. Still in his seminal paper, Berge [Berge 1982] showed that
digraphs whose underlying graph is perfect and symmetric digraphs are both ↵-diperfect.
To the best of our knowledge these are the only particular cases verified for Conjecture 1.
The lack of results for this conjecture and the complexity of the proof of Theorem 1 as
well as the time it took to prove it, seem to indicate that this is a very challenging problem.

A graph G is series-parallel if it can be obtained from the null graph by applying
the following operations repeatedly: (i) adding a vertex v with degree at most one; (ii)
adding a loop; (iii) adding a parallel edge; (iv) subdividing an edge. A clique of a digraph
D is a set S ✓ V (D) such that every pair of vertices in S are adjacent in D. A digraph
D is semicomplete if V (D) is a clique, and D is in-semicomplete if, for every vertex v 2
V (D), the set {u : uv 2 A(D)} is a clique. Note that out-trees, cycles, and semicomplete
digraphs are all in-semicomplete digraphs.

Series-parallel graphs are a common start point towards verifying graph
theoretical conjectures [Chen et al. 2017, Juvan et al. 1999, Merker 2015] and in-
semicomplete digraphs have been well studied in literature [Guo and Volkmann 1994,
Bang-Jensen et al. 1997] and have been used to confirm open conjectures on di-
graphs [Bang-Jensen et al. 2006, Galeana-Sánchez and Gómez 2008]. The contributions
of this work are the following theorems.

Theorem 2 Let D be a digraph containing no induced anti-directed odd cycle. If U(D)
is series-parallel, then D is ↵-diperfect.

Theorem 3 If D is an in-semicomplete digraph, then D is ↵-diperfect.

2. Outline of the proofs
The proofs of Theorems 2 and 3 use the following auxiliary results.

Lemma 4 If a digraph D can be partitioned into k induced subdigraphs, say H1,
H2, . . . , Hk, such that k � 2, every Hi satisfies the ↵-property, and ↵(D) =

Pk
i=1 ↵(Hi),

then D satisfies the ↵-property.



Proof: Let S be a maximum stable set of D and let Si = S \ V (Hi) for i = 1, 2, . . . , k.
Thus,

↵(D) = |S| =
kX

i=1

|Si| 
kX

i=1

↵(Hi) = ↵(D).

Hence, Si is a maximum stable set of Hi, and since the latter satisfies the ↵-property,
there exists an (Si)-path partition Pi of Hi, for i = 1, . . . , k. Therefore, P =

Sk
i=1 Pi

is an S-path partition of D. Since S is an arbitrary maximum stable set of D, the result
follows. ⇤

Lemma 5 If B is a clique cut of a digraph D, then D can be partitioned into two proper

induced subdigraphs D1 and D2 such that ↵(D) = ↵(D1) + ↵(D2). Moreover, if uv is

an arc of D such that u 2 V (D1) and v 2 V (D2), then {u, v} \ B 6= ;.

Lemma 6 Let D be a digraph. If U(D) contains a proper induced cycle containing at

most two vertices with degree greater than two, then D can be partitioned into two proper

induced subdigraphs D1 and D2 such that ↵(D) = ↵(D1) + ↵(D2).

2.1. Outline of the proof of Theorem 2

Towards a contradiction, suppose that the result does not hold, and let D be a counterex-
ample with the smallest number of vertices. It is not hard to check that D has order at
least 3. Moreover, since every subgraph of a series-parallel graph is also a series-parallel
graph, we have, by the minimality of D, that every proper induced subdigraph of D sat-
isfies the ↵-property, which means that D does not, since it is a counterexample. Then
we show that D can be partitioned into two proper induced subdigraphs D1 and D2 such
that ↵(D) = ↵(D1) + ↵(D2). We prove this result as follows. If D has a cut vertex,
then the result follows by Lemma 5. Otherwise, D has no cut vertex, and hence U(D)
is 2-connected. We show that U(D) contains an induced cycle C containing at most two
vertices with degree greater than 2. If U(D) = C, then we show that D satisfies the
↵-property, a contradiction. Otherwise, C is a proper induced subgraph, and hence the
result follows by Lemma 6. Therefore, there exists such partition of D and, by Lemma 4,
D satisfies the ↵-property, a contradiction.

2.2. Outline of the proof of Theorem 3

Towards a contradiction, suppose that the result does not hold and let D be a counterex-
ample with the smallest number of vertices. It is not hard to check that D has order at
least 3. Moreover, since every induced subgraph of an in-semicomplete digraph is also
an in-semicomplete digraph, we have, by the minimality of D, that every proper induced
subdigraph of D satisfies the ↵-property, which means that D does not, since it is a coun-
terexample. If D is disconnected, then ↵(D) = ↵(C) + ↵(D � V (C)), where C is a
component of D, and hence, by Lemma 4, D satisfies the ↵-property, a contradiction.
Therefore, we may assume that D is connected. If D is strong, then we use the follow-
ing result provided in [Bang-Jensen et al. 1993] to show that D satisfies the ↵-property, a
contradiction.

Theorem 7 (Bang-Jensen, Huang, and Prisner, 1993) An in-semicomplete digraph D
of order at least 2 is hamiltonian if, and only if, D is strong.



Since D is a connected non-strong digraph, there exists a strong component X
such that no arc in D is leaving X . Let Y = {v 2 V (D) \ V (X) : vu 2 A(D) and u 2
V (X)}. By a result of Bang-Jensen and Gutin [Bang-Jensen and Gutin 1998], we have
yx 2 A(D) for every y 2 Y and x 2 V (X). Thus, since D is in-semicomplete, Y is a
clique. If Y is a cut of D, then, by Lemma 5, D can be partitioned into two proper induced
subdigraphs D1 and D2 such that ↵(D) = ↵(D1) + ↵(D2), and hence, by Lemma 4, D
satisfies the ↵-property, a contradiction. Thus, we may assume that Y is not a vertex cut,
and hence V (D) = Y [ V (X). We note that u 2 Y is a vertex adjacent to every vertex
of D and prove that if D� u satisfies the ↵-property, then D also satisfies the ↵-property,
a contradiction.

References
Bang-Jensen, J. r., Guo, Y., Gutin, G., and Volkmann, L. (1997). A classification of locally

semicomplete digraphs. Discrete Math., 167/168:101–114. 15th British Combinatorial
Conference (Stirling, 1995).

Bang-Jensen, J. r. and Gutin, G. (1998). Generalizations of tournaments: a survey. J.

Graph Theory, 28(4):171–202.

Bang-Jensen, J. r., Huang, J., and Prisner, E. (1993). In-tournament digraphs. J. Combin.

Theory Ser. B, 59(2):267–287.

Bang-Jensen, J. r., Nielsen, M. H., and Yeo, A. (2006). Longest path partitions in gener-
alizations of tournaments. Discrete Math., 306(16):1830–1839.

Berge, C. (1982). Diperfect graphs. Combinatorica, 2(3):213–222.

Bondy, J. A. and Murty, U. S. R. (2008). Graph theory, volume 244 of Graduate Texts in

Mathematics. Springer, New York.

Chen, G., Ehrenmüller, J., Fernandes, C. G., Heise, C. G., Shan, S., Yang, P., and Yates,
A. N. (2017). Nonempty intersection of longest paths in series-parallel graphs. Discrete

Math., 340(3):287–304.

Chudnovsky, M., Robertson, N., Seymour, P., and Thomas, R. (2006). The strong perfect
graph theorem. Ann. of Math. (2), 164(1):51–229.
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