Vertex partition problems in digraphs *

M. Sambinelli ${ }^{1}$, C. N. Lintzmayer ${ }^{2}$, C. N. da Silva ${ }^{3}$, O. Lee 4
${ }^{1}$ Institute of Mathematics and Statistics - University of São Paulo - Brazil
${ }^{2}$ Center for Mathematics, Computation and Cognition - Federal University of ABC - Brazil
${ }^{3}$ Department of Computing - Federal University of São Carlos - Brazil
${ }^{4}$ Institute of Computing - University of Campinas - Brazil

Abstract

Let D be a digraph and k be a positive integer. Linial (1981) conjectured that the k-norm of a k-minimum path partition of a digraph D is at most $\max \left\{\sum_{C \in \mathcal{C}}|C|: \mathcal{C}\right.$ is a partial k-coloring of $\left.D\right\}$. Berge (1982) conjectured that every k-minimum path partition contains a partial k-coloring orthogonal to it. It is well known that Berge's Conjecture implies Linial's Conjecture. In this work, we verify Berge's Conjecture, and consequently Linial's Conjecture, for locally in-semicomplete digraphs and k-minimum path partitions containing only two paths. Moreover, we verify a conjecture related to Berge's and Linial's Conjectures for locally in-semicomplete digraphs.

1. Introduction

Given a digraph D, we denote its vertex set by $V(D)$ and its arc set by $A(D)$. A path partition \mathcal{P} of a digraph D is a collection of paths such that $\{V(P): P \in \mathcal{P}\}$ is a partition of $V(D)$. Given a positive integer k, the k-norm of \mathcal{P}, denoted by $|\mathcal{P}|_{k}$, is $\sum_{P \in \mathcal{P}} \min \{|V(P)|, k\}$. We say that \mathcal{P} is k-minimum if $|\mathcal{P}|_{k} \leq\left|\mathcal{P}^{\prime}\right|_{k}$ for every path partition \mathcal{P}^{\prime} of D, and we denote by $\pi_{k}(D)$ the k-norm of a k-minimum path partition of D. A partial k-coloring \mathcal{C} of D is a collection of stable sets such that \mathcal{C} is a packing of $V(D)$ and $|\mathcal{C}| \leq k$. Let $\alpha_{k}(D)=\max \left\{\sum_{C \in \mathcal{C}}|C|: \mathcal{C}\right.$ is a partial k-coloring of $\left.D\right\}$. In 1981, Linial [Linial 1981] proposed Conjecture 1 which extends the classical result of Gallai and Milgram (see [Hartman 2006]) that says that the size of a minimum path partition of a digraph is at most its stability number.

Conjecture 1 (Linial, 1981) If D is a digraph and $k \in \mathbb{Z}^{+}$, then $\pi_{k}(D) \leq \alpha_{k}(D)$.
A path partition \mathcal{P} of a digraph D and a partial k-coloring \mathcal{C} of D are orthogonal if each $P \in \mathcal{P}$ meets $\min \{|V(P)|, k\}$ stable sets in \mathcal{C}. In an attempt to unify the proof of Gallai and Milgram's result with another classical result in graph theory (see [Berge 1997]), Berge [Berge 1982] proposed Conjecture 2. It is known that this conjecture implies Conjecture 1 (see [Hartman 2006]).

Conjecture 2 (Berge, 1982) Let D be a digraph and $k \in \mathbb{Z}^{+}$. If \mathcal{P} is a k-minimum path partition of D, then there exists a partial k-coloring of D orthogonal to \mathcal{P}.

[^0]Conjectures 1 and 2 remain open, but they were verified for some particular cases. Conjecture 2, and hence Conjecture 1, was verified for $k=1$ [Linial 1978], $k=2$ [Berger and Hartman 2008], $k \geq \lambda-3$ (where λ is the order of a longest path) [Herskovics 2016], when all the paths from the k-minimum path partition have order at most k [Berge 1982] or at least k [Aharoni and Hartman 1993], acyclic digraphs [Aharoni et al. 1985], and bipartite digraphs [Berge 1982]. Moreover, Conjecture 1 was verified for a superclass of split digraphs [Sambinelli et al. 2017].

Let D be a digraph and k be a positive integer. A path k-pack \mathcal{P} of D is a collection of paths such that $\{V(P): P \in \mathcal{P}\}$ is a packing of $V(D)$ and $|\mathcal{P}| \leq k$. The weight of \mathcal{P}, denoted by $\|\mathcal{P}\|$, is $\sum_{P \in \mathcal{P}}|V(P)|$, and we say that \mathcal{P} is maximum if $\|\mathcal{P}\| \geq\left\|\mathcal{P}^{\prime}\right\|$ for every path k-pack \mathcal{P}^{\prime} of D. A coloring \mathcal{C} of D is a collection of stable sets such that \mathcal{C} is a partition of $V(D)$. A path k-pack \mathcal{P} and a coloring \mathcal{C} are orthogonal if each stable set $C \in \mathcal{C}$ meets $\min \{|C|, k\}$ paths in \mathcal{P}. As a generalization for a conjecture related to Conjecture 1, Aharoni, Hartman, and Hoffman [Aharoni et al. 1985] proposed Conjecture 3 - to understand the relationship among these conjectures, see [Hartman 2006]. Conjecture 3 was verified for $k=1$ [Gallai 1968], when the maximum path k-pack has at least one trivial path [Hartman et al. 1994], bipartite digraphs [Hartman et al. 1994], and acyclic digraphs [Aharoni et al. 1985].
Conjecture 3 (Aharoni, Hartman, and Hoffman, 1985) Let D be a digraph and $k \in$ \mathbb{Z}^{+}. If \mathcal{P} is a maximum path k-pack of D, then there is a coloring of D orthogonal to \mathcal{P}.

A digraph D is semicomplete if $V(D)$ is a clique, and it is in-semicomplete if, for every vertex $v \in V(D)$, the set $\{u: u v \in A(D)\}$ is a clique. Note that out-trees, cycles, and semicomplete digraphs are all in-semicomplete digraphs. Insemicomplete digraphs have been well studied in literature [Guo and Volkmann 1994, Bang-Jensen et al. 1997] and have been used as a particular case to confirm open conjectures on digraphs [Bang-Jensen et al. 2006, Galeana-Sánchez and Gómez 2008]. The contributions of this work are the following theorems.

Theorem 1 If \mathcal{P} is a k-minimal path partition of an in-semicomplete digraph D, then there exists a partial k-coloring of D orthogonal to \mathcal{P}.
Theorem 2 If \mathcal{P} is a maximum path k-pack of an in-semicomplete digraph D, then there exists a coloring of D orthogonal to \mathcal{P}.
Theorem 3 Let D be a digraph and let k be a positive integer. If $\mathcal{P}=\left\{P_{1}, P_{2}\right\}$ is a k-minimum path partition of D, then there exists a partial k-coloring orthogonal to \mathcal{P}.

Theorems 1 and 3 confirm, respectively, Conjecture 2 for in-semicomplete digraphs and for k-minimum path partitions containing only two paths. Theorem 2 confirms Conjecture 3 for in-semicomplete digraphs.

2. Brief outline of the proofs of Theorems 1 and 2

Our proofs for both theorems use induction and follow similar ideas. One important structure that they rely on is the following characterization of in-semicomplete digraphs [Bang-Jensen and Gutin 2009]. Given a collection of paths \mathcal{P}, the set of terminal vertices of paths in \mathcal{P} is denote by $\operatorname{ter}(\mathcal{P})$, i.e., $\operatorname{ter}(\mathcal{P})=\left\{v_{\ell}: v_{1} v_{2} \cdots v_{\ell}=P \in \mathcal{P}\right\}$.
Theorem 4 (Bang-Jensen and Gutin, 2009) A digraph D is in-semicomplete if, and only if, for every vertex v and every pair of internally vertex-disjoint paths P and Q ending at v, there exists a path R ending at v such that $V(R)=V(P) \cup V(Q)$.

2.1. Theorem 1

Let D be an in-semicomplete digraph, let k be a positive integer, and let \mathcal{P} be a path partition of D. Our proof consists in showing that (i) there exists a partial k-coloring of D orthogonal to \mathcal{P}; or (ii) there exists a path partition \mathcal{B} of D such that $|\mathcal{B}|_{k}<|\mathcal{P}|_{k}$ and $\operatorname{ter}(\mathcal{B}) \subseteq \operatorname{ter}(\mathcal{P})$. We start our proof by showing that if (ii) does not hold, then there exists a path partition \mathcal{Q} such that $|\mathcal{Q}|_{k}=|\mathcal{P}|_{k}, \operatorname{ter}(\mathcal{Q}) \subseteq \operatorname{ter}(\mathcal{P})$, $\operatorname{ter}(\mathcal{Q})$ is stable, and every partial k-coloring orthogonal to \mathcal{Q} is also orthogonal to \mathcal{P}. Our proof for such result follows by induction on the number of paths in \mathcal{P} with order smaller than k. This reduces the problem of proving the result for \mathcal{P} to the problem of proving it for \mathcal{Q}. The remaining proof follows by induction of k. If $k=1$, then the stable set $\operatorname{ter}(\mathcal{Q})$ is a partial 1-coloring orthogonal to \mathcal{Q}, and to \mathcal{P}, and the result follows. Otherwise, $k>1$ and let $D^{\prime}=D-\operatorname{ter}(\mathcal{Q})$ and $\mathcal{Q}^{\prime}=\left\{Q_{1}: Q_{1} u=Q \in \mathcal{Q}\right\}$. Note that D^{\prime} is an in-semicomplete digraph and that \mathcal{Q}^{\prime} is a path partition of D^{\prime}. By the induction hypothesis applied to D^{\prime}, \mathcal{Q}^{\prime}, and $k-1$, there exists (a) a partial $(k-1)$-coloring \mathcal{C} of D^{\prime} orthogonal to \mathcal{Q}^{\prime}, or (b) a path partition \mathcal{R}^{\prime} of D^{\prime} such that $\left|\mathcal{R}^{\prime}\right|_{k-1}<\left|\mathcal{Q}^{\prime}\right|_{k-1}$ and $\operatorname{ter}\left(\mathcal{R}^{\prime}\right) \subseteq \operatorname{ter}\left(\mathcal{Q}^{\prime}\right)$. If (a) holds, then $\mathcal{C} \cup\{\operatorname{ter}(\mathcal{Q})\}$ is a partial k-coloring orthogonal to \mathcal{Q} and (i) holds. So we assume that (b) holds and, with the help of Theorem 4, we show how to build a path partition of D satisfying (ii) from \mathcal{Q}^{\prime}.

2.2. Theorem 2

Let D be an in-semicomplete digraph, let k be a positive integer, and let \mathcal{P} be a path k pack of D. Our proof consists in showing that (i) there exists a coloring of D orthogonal to \mathcal{P}, or (ii) there exists a path k-pack \mathcal{B} of D such that $\|\mathcal{B}\|=\|\mathcal{P}\|+1$ and $\operatorname{ter}(\mathcal{B}) \subseteq$ $\operatorname{ter}(\mathcal{P}) \cup \bar{V}_{\mathcal{P}}$, where $\bar{V}_{\mathcal{P}}=V(D) \backslash \cup_{P \in \mathcal{P}} V(P)$. Our proof follows by induction on $\left|\bar{V}_{\mathcal{P}}\right|$. If $\bar{V}_{\mathcal{P}}=\emptyset$, then the coloring $\{\{v\}: v \in V(D)\}$ is orthogonal to \mathcal{P} and (i) holds. Thus, we may assume $\bar{V}_{\mathcal{P}} \neq \emptyset$. Let w be a vertex in $\bar{V}_{\mathcal{P}}$ and let $\mathcal{Q}=\mathcal{P} \cup\{w\}$. If $|\mathcal{Q}| \leq k$, then $\mathcal{B}=\mathcal{Q}$ satisfies (ii) and the result follows. Thus we may assume that $|\mathcal{Q}|>k$, and, in this case, $|\mathcal{Q}|=k+1$ and $|\mathcal{P}|=k$, since $|\mathcal{P}| \leq k$. Let $S \subseteq \bar{V}_{\mathcal{P}}$ be a maximum stable set in $D\left[\bar{V}_{\mathcal{P}}\right]$ and let $Z=\operatorname{ter}(\mathcal{P}) \cup S$. We can prove that Z is a stable set of D. Let $D^{\prime}=D-Z$, and let $\mathcal{P}^{\prime}=\left\{P^{\prime}: P^{\prime} u=P \in \mathcal{P}\right\}$. Note that D^{\prime} is an in-semicomplete digraph, \mathcal{P}^{\prime} is a path k-pack of $D^{\prime},\left\|\mathcal{P}^{\prime}\right\|=\|\mathcal{P}\|-k$, and $\bar{V}_{\mathcal{P}}^{\prime} \subset \bar{V}_{\mathcal{P}}$. By the induction hypothesis applied to D^{\prime} and \mathcal{P}^{\prime} we have (a) there exists a coloring \mathcal{C} of D^{\prime} orthogonal to \mathcal{P}^{\prime}, or (b) there exists a path k-pack \mathcal{Q}^{\prime} of D^{\prime} such that $\left\|\mathcal{Q}^{\prime}\right\|=\left\|\mathcal{P}^{\prime}\right\|+1$ and $\operatorname{ter}\left(\mathcal{Q}^{\prime}\right) \subseteq \operatorname{ter}\left(\mathcal{P}^{\prime}\right) \cup \bar{V}_{\mathcal{P}}^{\prime}$. If (a) holds, then $\mathcal{C} \cup\{Z\}$ is a coloring of D orthogonal to \mathcal{P} and (i) holds. So we assume that (b) holds and, with the help of Theorem 4 and Hall's theorem, we show how to extend the path k-pack \mathcal{Q}^{\prime} to a path k-pack of D that satisfies (ii).

3. Brief outline of the proof of Theorem 3

Let D be a digraph, let k be a positive integer, and let $\mathcal{P}=\left\{P_{1}, P_{2}\right\}$ be a k-minimum path partition of D. Let $P_{1}=u_{1} u_{2} \cdots u_{\ell}$ and let $P_{2}=v_{1} v_{2} \cdots v_{r}$. If either $\ell, r \leq k$ or $\ell, r \geq k$, then there exists a partial k-coloring orthogonal to \mathcal{P} and the result follows [Berge 1982, Aharoni and Hartman 1993]. Thus we may assume, without loss of generality, that $\ell>k$ and $r<k$, and hence $|\mathcal{P}|_{k}=k+r$. We can prove that P_{1} is a longest path of D. Let $X=V\left(P_{2}\right), Y=V\left(P_{1}\right)$, and G be the $\{X, Y\}$ bipartite graph defined by $V(G)=X \cup Y$ and $E(G)=\{u v: u \in X, v \in Y$, and u and v are not adjacent in $D\}$. Using Hall's theorem, we can show that there exists a matching M in G covering the vertices of X,
otherwise P_{1} would not be a longest path in D. Given a vertex $v \in X$, we write $M(v)$ to denote the vertex in $Y=V\left(P_{1}\right)$ matched to v in M. By the construction of G, v and $M(v)$ are non-adjacent. Let $\mathcal{S}_{1}=\{\{u, M(u)\}: u \in X\}$, and let \mathcal{S}_{2} be a set of $k-r$ vertices of P_{1} not matched by M. Thus, $\mathcal{S}_{1} \cup\left\{\{u\}: u \in \mathcal{S}_{2}\right\}$ is a partial k-coloring orthogonal to \mathcal{P}.

References

Aharoni, R. and Hartman, I. B.-A. (1993). On Greene-Kleitman's theorem for general digraphs. Discrete Math., 120(1-3):13-24.
Aharoni, R., Hartman, I. B.-A., and Hoffman, A. J. (1985). Path partitions and packs of acyclic digraphs. Pacific J. Math., 118(2):249-259.

Bang-Jensen, J. and Gutin, G. (2009). Digraphs: Theory, algorithms and applications. Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London, 2nd edition.

Bang-Jensen, J. r., Guo, Y., Gutin, G., and Volkmann, L. (1997). A classification of locally semicomplete digraphs. Discrete Math., 167/168:101-114. 15th British Combinatorial Conference (Stirling, 1995).
Bang-Jensen, J. r., Nielsen, M. H., and Yeo, A. (2006). Longest path partitions in generalizations of tournaments. Discrete Math., 306(16):1830-1839.
Berge, C. (1982). k-optimal partitions of a directed graph. European J. Combin., 3(2):97101.

Berge, C. (1997). Motivations and history of some of my conjectures. Discrete Math., 165/166:61-70. Graphs and combinatorics (Marseille, 1995).

Berger, E. and Hartman, I. B.-A. (2008). Proof of Berge's strong path partition conjecture for $k=2$. European J. Combin., 29(1):179-192.
Galeana-Sánchez, H. and Gómez, R. (2008). Independent sets and non-augmentable paths in generalizations of tournaments. Discrete Math., 308(12):2460-2472.
Gallai, T. (1968). On directed paths and circuits. In Theory of Graphs (Proc. Colloq., Tihany, 1966), pages 115-118. Academic Press, New York.
Guo, Y. and Volkmann, L. (1994). Connectivity properties of locally semicomplete digraphs. J. Graph Theory, 18(3):269-280.
Hartman, I. B.-A. (2006). Berge's conjecture on directed path partitions-a survey. Discrete Math., 306(19-20):2498-2514.

Hartman, I. B.-A., Saleh, F., and Hershkowitz, D. (1994). On Greene's theorem for digraphs. J. Graph Theory, 18(2):169-175.

Herskovics, D. (2016). Proof of Berge's path partition conjecture for $k \geq \lambda-3$. Discrete Appl. Math., 209:137-143.
Linial, N. (1978). Covering digraphs by paths. Discrete Math., 23(3):257-272.
Linial, N. (1981). Extending the Greene-Kleitman theorem to directed graphs. J. Combin. Theory Ser. A, 30(3):331-334.
Sambinelli, M., Nunes da Silva, C., and Lee, O. (2017). On Linial's conjecture for spine digraphs. Discrete Math., 340(5):851-854.

[^0]: ${ }^{*}$ O. Lee was partially supported by CNPq (Proc. 311373/2015-1) and FAPESP (Proc. 2015/11937-9). C. N. Lintzmayer was supported by FAPESP (Proc. 2016/14132-4). M. Sambinelli was partially supported by CNPq (Proc. 141216/2016-6) and FAPESP (Proc. 2017/23623-4). E-mails: candida@ufscar .br (C. N. da Silva), lee@ic.unicamp.br (O. Lee), carla.negri@ufabc.edu.br (C. N. Lintzmayer), msambinelli@ic.unicamp.br (M. Sambinelli).

