Calculando o número de envoltória nas convexidades P_3 e $P_3^{*\dagger}$

J. Araujo^{1,3}, M. Campêlo^{2,3}, G. H. de Sousa^{2,3}

¹Dep. de Matemática - Universidade Federal do Ceará (UFC)

²Dep. de Estatística e Matemática Aplicada - Universidade Federal do Ceará (UFC)

³Grupo de Pesquisa ParGO - Paralelismo, Grafos e Otimização

julio@mat.ufc.br, mcampelo@lia.ufc.br, gabriel.hellen@hotmail.com

Abstract. A subset of vertices S in a graph G = (V, E) is convex in the P_3 (resp. P_3^*) convexity if every vertex in $V(G) \setminus S$ does not have two neighbors (resp. that are not adjacent to each other) in S. The convex hull of S is the minimum convex set containing it. A hull set is a set whose convex hull is V(G). The hull number is the cardinality of a minimum hull set. In this work, we propose and study two integer-linear programming formulations to determine the hull number of a graph in the P_3 and P_3^* convexities, which we believe to be the first ones presented in the literature. We carry out some computational experiments to evaluate their performances.

Resumo. Um subconjunto de vértices S em um grafo G = (V, E) é convexo na convexidade P_3 (resp. P_3^*) se todo vértice $v \in V(G) \setminus S$ não possuir dois vizinhos (resp. que não sejam adjacentes entre si) em S. A envoltória convexa de Sé o menor conjunto convexo que o contém. Um conjunto de envoltória é um conjunto cuja envoltória convexa é V(G). O número de envoltória é a cardinalidade de um conjunto de envoltória mínimo. Neste trabalho, propomos e estudamos duas formulações de programação linear-inteira para determinar o número de envoltória de um grafo nas convexidades P_3 e P_3^* , que acreditamos serem as primeiras na literatura. Realizamos experimentos computacionais para avaliar seus desempenhos.

Introdução

Um *espaço de convexidade* é um par ordenado (V, C), onde V é um conjunto finito não vazio e C é uma família de subconjuntos de V, chamados de *conjuntos convexos*, satisfazendo:

(C1) $\emptyset, V \in \mathcal{C}$ e (C2) $C \cap C' \in \mathcal{C}$, para todos $C, C' \in \mathcal{C}$.

Dado um subconjunto $C \subseteq V$, a *envoltória convexa de* C (com respeito a (V, C)) é o único conjunto minimal (com respeito a inclusão) $C' \in C$ que contém C e é denotado por $H_{(V,C)}(C)$. Se $H_{(V,C)}(C) = V$, então C é chamado um *conjunto de envoltória* de (V, C). O *número de envoltória de* V *com respeito a* C é a cardinalidade de um conjunto de envoltória mínimo. Essas noções remontam aos trabalhos de [Farber and Jamison 1986, Duchet 1988].

[†]Esta pesquisa foi financiada pelo CNPq sob projetos 459466/2014-3, 310234/2015-8 e 401519/2016-3.

Quando se trata de convexidade em grafos, a maioria das convexidades definidas na literatura toma V como o conjunto de vértices e a família C como subconjuntos de vértices que são pontos fixos de uma função de intervalo. Dado um grafo G = (V, E), uma *função de intervalo* é uma função $I : 2^{V(G)} \rightarrow 2^{V(G)}$ tal que $I(S) \supseteq S$, para todo $S \subseteq V(G)$. Os vértices em $I(S) \setminus S$ são ditos *infectados* ou *gerados* por S. Note que, como um função de intervalo I é monótona com respeito a inclusão, seus pontos fixos S (ou seja, I(S) = S) definem uma convexidade em V(G), dita convexidade de intervalo.

Há várias convexidades de intervalo estudadas na literatura. Aqui estudamos as convexidades P_3 e P_3^* . Na primeira, I(S) retorna o conjunto de vértices que possuem dois vizinhos em S (ou seja, que pertencem a um P_3 entre vértices de S), enquanto que na segunda I(S) retorna apenas os vértices que possuem dois vizinhos u, v em S tais que $uv \notin E(G)$ (consequentemente, neste caso o P_3 deve ser induzido). Além disso, o nosso interesse é em calcular o número de envoltória nessas convexidades.

Apresentamos e estudamos duas formulações de programação linear-inteira para determinar esses parâmetros, que acreditamos serem as primeiras na literatura. Em seguida, executamos testes em instâncias geradas aleatoriamente para analisar o desempenho de tais formulações quando as instâncias são grafos arbitrários, ou mesmo bipartidos. Vale enfatizar que a determinação de tais parâmetros é um problema *NP*-díficil para grafos bipartidos [Araújo et al. 2013] e para grafos planares com grau máximo limitado [Draque Penso et al. 2014].

Formulações

Modelo 1: Passo de Contaminação.

s.

O primeiro modelo baseia-se no tempo para contaminação, ou seja, no número de aplicações da função de intervalo necessárias para infectar todo o grafo. Seja P um limite superior para esse tempo (por exemplo, P = |V| - 2). Para $k \in V$, considere H_k como o conjunto de pares de vértices ambos adjacentes a k (e não adjacentes entre si, para P_3^*). Usamos as variáveis binárias $x_i^p \in y_{ij}^p$, $i, j \in V \in p = 0, ..., P$, para indicar, respectivamente, se o vértice i e o par $\{i, j\}$ estão contaminados ou não no passo p. Com isso, obtemos o modelo:

$$\min \quad \sum_{i \in V} x_i^0 \tag{1}$$

a:
$$x_i^P = 1,$$
 $\forall i \in V,$ (2)

$$y_{ij}^p \le x_i^p, y_{ij}^p \le x_j^p, \qquad \forall i, j \in V, p = 0, ..., P,$$
 (3)

$$x_k^{p+1} \le \sum_{\{i,j\} \in H_k} y_{ij}^p + x_k^0, \qquad \forall k \in V, p = 0, ..., P - 1,$$
(4)

$$x_i^p \in \{0, 1\}, y_{ij}^p \in \{0, 1\}, \qquad \forall i, j \in V, p = 0, ..., P.$$
(5)

As restrições (2) garantem que todos os vértices serão contaminados, enquanto (4) asseguram que *i* está infectado no passo p + 1 se foi infectado no passo 0 ou dois de seus vizinhos estão infectados no passo *p*. As restrições (3) estabelecem a relação necessária entre as variáveis. Note que esse modelo apresenta um número cúbico, em termos de |V|, de variáveis e de restrições, e pode ser submetido diretamente a um *solver*.

Modelo 2: Co-convexo.

Este modelo é inspirado no método implementado em [Sag] para o cálculo do número de envoltória na convexidade geodésica. Para descrevê-lo, precisamos introduzir uma nova definição.

Dado um grafo G, um conjunto $S \subseteq V(G)$ é *co-convexo* se $V(G) \setminus S$ é convexo. Consequentemente, observe que, se nenhum vértice de S for infectado inicialmente, como a envoltória de $V(G) \setminus S$ é o próprio conjunto, nenhum dos vértices de S se tornará contaminado. Desta forma, pode-se deduzir que S' é um conjunto de envoltória se, e somente se, para todo conjunto co-convexo S, temos que $S' \cap S \neq \emptyset$. Essa propriedade leva ao segundo modelo, onde a variável binária x_i indica se o vértice i faz parte do conjunto de envoltória:

$$\begin{array}{ll} \min & \sum_{i \in V} x_i \\ \text{s.a:} & \sum_{i \in S} x_i \geq 1 \\ & x_i \in \{0, 1\} \end{array} & \quad \forall S \in CC(G) \\ & \forall i \in V(G) \end{array}$$

onde CC(G) é a família de conjuntos co-convexos de G (na respectiva convexidade).

Pode-se diferenciar esse modelo do anterior em alguns aspectos. Nesse, o número de variáveis é linear, o que configura uma vantagem em relação ao anterior, onde tal número é cúbico. Por outro lado, o modelo co-convexo possui um número exponencial de restrições, tornando-se inviável sua submissão direta a um *solver*. Para resolvê-lo, podemos aplicar o método de planos-de-corte. A separação das restrições pode ser feita em tempo polinomial.

Experimentos Computacionais

Avaliamos o desempenho das duas formulações em instâncias geradas aleatoriamente. Cada grafo é gerado a partir de dois parâmetros: n (quantidade de vértices) e $p \in (0, 1]$ (probabilidade de existência de cada aresta). Para obter grafos bipartidos, separamos os vértices em dois conjuntos $A \in B$, com $\lceil n/2 \rceil \in \lfloor n/2 \rfloor$ vértices; criamos uma árvore geradora T (mantendo a bipartição) e, para todo par $(i, j) \in (A \times B) \setminus E(T)$ acrescentamos a aresta ij com probabilidade p. Para gerar os grafos aleatórios, segue-se o mesmo procedimento, porém a árvore inicial é qualquer.

Um resumo dos resultados dos experimentos pode ser visto nas Tabelas 1 (grafos bipartidos) e 2 (grafos arbitrários). Em cada tabela, apresentamos, para cada instância, o tempo requerido (em segundos) pelos dois modelos (Pas = modelo 1, CC = modelo 2), considerando as duas convexidades (P_3 e P_3^*), além da solução ótima (Sol = número de envoltória) em cada convexidade. O sinal "-" indica que a formulação não conseguiu encontrar o ótimo no tempo limite de 600s, usando o solver CPLEX.

Podemos observar que o modelo 1 demanda tempos bastante similares para as duas convexidades em bipartidos, mas o mesmo já não ocorre para grafos arbitrários. Ele não conseguiu lidar com a maioria das instâncias com 40 vértices ou mais no tempo limite. Já o modelo 2 mostrou-se bastante eficiente para ambas, com tempos de execução similares. Como trabalho futuro, desejamos estudar uma maior quantidade de instâncias e uma

	V	p	P3-Pas	P3*-Pas	P3-CC	P3*-CC	Sol-P3	Sol-P3*	
1	10	0,9	0,5598	0,5835	0,0017	0,0019	2	2	
2	10	0,5	0,5867	0,5750	0,0016	0,0017	2	2	
3	10	0,2	0,1502	0,1739	0,6089	0,6532	5	5	
4	20	0,9	18,6940	18,5222	0,0031	0,0033	2	2	
5	20	0,5	55,4023	54,0191	0,0024	0,0029	2	2	
6	20	0,2	8,8439	8,8338	2,0854	2,0584	4	4	
7	40	0,9	566,0112	563,8231	0,0088	0,0104	2	2	
8	40	0,5	-	-	0,0067	0,0076	2	2	
9	40	0,2	-	-	0,0523	0,0601	2	2	
10	80	0,9	_	-	0,0432	0,0535	2	2	
11	80	0,5	_	-	0,0229	0,0275	2	2	
12	80	0,2	-	-	0,0141	0,0118	2	2	

Tabela 1. Grafos bipartidos

Tabela	2	Grafos	arhitrários
Iavela	۷.	Glaius	aivillarius

	V	p	P3-Pas	P3*-Pas	P3-CC	P3*-CC	Sol-P3	Sol-P3*
1	10	0,9	0,9740	0,1496	0,0025	0,1074	2	2
2	10	0,5	0,9958	0,4127	0,0019	0,0232	2	3
3	10	0,2	0,5135	0,2033	0,5231	0,3269	3	4
4	20	0,9	27,2655	11,7637	0,0051	0,3394	2	2
5	20	0,5	23,2847	22,5997	0,0034	0,0049	2	2
6	20	0,2	-	-	0,0283	0,0359	2	2
7	40	0,9	-	-	0,0219	0,0464	2	2
8	40	0,5	-	-	0,0114	0,0104	2	2
9	40	0,2	-	-	0,0057	0,0063	2	2
10	80	0,9	-	-	0,1303	0,1042	2	2
11	80	0,5	-	-	0,0606	0,0483	2	2
12	80	0,2	-	-	0,0244	0,0236	2	2

maior variação da densidade de cada. Também pretendemos aprimorar o modelo 1 com o uso de propriedades específicas das convexidades para gerar restrições que fortaleçam a formulação.

Referências

- Convexity properties of graphs on sagemath. http://doc.sagemath.org/html/ en/reference/graphs/sage/graphs/convexity_properties. html. Accessed: 2018-03-27.
- Araújo, R., Sampaio, R., and Szwarcfiter, J. (2013). The convexity of induced paths of order three. *Electronic Notes in Discrete Mathematics*, 44:109 114.
- Draque Penso, L., Protti, F., Rautenbach, D., and Souza, U. S. (2014). On p3-convexity of graphs with bounded degree. In Gu, Q., Hell, P., and Yang, B., editors, *Algorithmic Aspects in Information and Management*, pages 263–274, Cham. Springer International Publishing.
- Duchet, P. (1988). Convex sets in graphs, ii. minimal path convexity. *Journal of Combinatorial Theory, Series B*, 44(3):307 316.
- Farber, M. and Jamison, R. E. (1986). Convexity in graphs and hypergraphs. *SIAM J. Algebraic Discrete Methods*, 7:433–444.