
Deletion Graph Problems Based on Deadlock Resolution
Alan Diêgo Aurélio Carneiro, Fábio Protti, Uéverton S. Santos

1Programa de Pós-Graduação em Computação - IC UFF, Niterói, Brasil

{aaurelio,usouza,fabio}@ic.uff.br

Abstract. A deadlock occurs in a distributed computing when a group of pro-
cesses wait indefinitely for resources from each other. Such a property is stable,
that is, once occurs into a global state it also will exist in any subsequent global
state. Distributed computations are usually represented by wait-for graphs,
where the behavior of processes is determined by a deadlock model. In this
paper we consider the scenario where deadlock was detected in a system and
then some deadlock-breaking set must be found and removed. Hence, given a
“snapshot” G of a deadlocked distributed computation which operates accord-
ing to a deadlock model M, we investigate the complexity of vertex deletion and
arc deletion problems whose goal is to obtain the minimum number of removals
in order to turn G free of graph structures that characterize deadlocks. The
complexity of such problems depends on the deadlock model which governs the
computation as well as the type of structure to be removed. The results of this
paper are NP-completeness proofs and polynomial algorithms for general and
particular graph classes. In special, we show that the arc deletion problem on
the OR Model can be solved in polynomial time, and the vertex deletion problem
on the OR Model remains NP-Complete even on graphs with ∆(G) = 4, but it
is solvable in polynomial time on graphs with ∆(G) ≤ 3.

1. Introdution
A set of processes belongs to a deadlock if each process of this set is blocked, waiting
response from another process of this same set; that is, the processes can not proceed
their execution, because of a necessary event or response that only another process in the
same set can send. Deadlock is a common phenomenon to resource sharing.

A wait-for graph G = (V,E) is an useful abstraction to analyse deadlock situa-
tions. The set of vertices V represents processes in a distributed computation and the set
of directed edges E represents wait conditions [1]. An edge exists in E directed away
from vi ∈ V towards vj ∈ V if vi is blocked, waiting a signal from vj . The graph G
changes dynamically according to the dependency model as the computation progresses.
The dependency models are known as deadlock models and, in essence, they determine
the development of G. More precisely, a deadlock model specifies rules for vertices that
are not sinks in G to become sinks [2]. (A sink is a vertex with out-degree zero.)

The main deadlock models that have been investigated so far in the literature are
presented below.

AND model – A process vi can only become a sink when vi receives a signal from all of
the processes in Oi.

OR model – a process vi becomes a sink when vi receives a signal from one of the
processes in Oi.



X-Out-Of-Y model – There are two integers, xi and yi, associated with a process vi. In
order to be relieved from its wait state, it suffices for vi to receive a signal from any xi of
those yi processes.

AND-OR model – There are ti ≥ 1 subsets of Oi associated with process vi. These
subsets are denoted by O1

i , . . . , O
ti
i and must be such that Oi = O1

i ∪ · · · ∪O
ti
i . It suffices

for a process vi to become a sink to receive a signal from all processes in at least one of
O1

i , . . . , O
ti
i .

Once a deadlock is detected, only a external intervention may break it. The con-
tributions of this work are to provide an analysis of the computational complexity of op-
timization problems, so-called deletion problems, related to deadlock resolution. Given
a deadlocked distributed computation G which operates according to a deadlock model
M ∈ {AND, OR, X-OUT-OF-Y, AND-OR}, we investigate vertex-deletion and arc-
deletion problems whose goal is to obtain the minimum number of removals in order to
turn G free of graph structures that characterize deadlocks. The complexity of such prob-
lems depends on the deadlock model which governs the computation as well as the type
of structure to be removed. To the best of our knowledge, this computational complex-
ity mapping considering the particular combination of deletion operations and deadlock
models for deadlock resolution is novel.

Due to space constraints, all proofs will be omitted.

2. Deletion Problems
We define λ–DELETION(M) as a generic optimization problem for deadlock resolution,
where λ indicates the type of deletion operation to be used in order to break all the dead-
locks of the input graph, and M ∈ {AND, OR, X-OUT-OF-Y, AND-OR} is the dead-
lock model of the wait-for graph G.

The types of deletion operations considered in this work are explained below:

1. Arc: The intervention is given by arc removal. The removal of an arc can be seen
as the preemption of a resource.

2. Vertex: The intervention is given by vertex removal. The removal of a vertex can
be seen as the abortion of one process.

3. Outputs: The intervention is given by removing all out-edges of a vertex.The
removal of all out-edges of a vertex can be interpreted as an immediate trans-
formation of a blocked process into an executable process by preempting all its
required resources.

3. Computational Complexities
As deadlock detection can be done in polynomial time for any model M ∈ {AND, OR,
X-OUT-OF-Y, AND-OR}, it remains to show NP-hardness proofs or polynomial algo-
rithms for our problems. The complexities are proved in the theorems below.
Theorem 1.

(a) ARC–DELETION(AND) is NP-Hard.
(b) VERTEX–DELETION(AND) is NP-Hard.
(c) OUTPUTS–DELETION(AND) is NP-Hard.



Theorem 2.
(a) ARC–DELETION(OR) can be solved in polynomial time.
(b) OUTPUTS–DELETION(OR) can be solved in linear time.

Theorem 3.
(a) ARC–DELETION(AND-OR), VERTEX–DELETION(AND-OR) and OUTPUTS–

DELETION(AND-OR) are NP-Hard.
(b) ARC–DELETION(X-OUT-OF-Y), VERTEX–DELETION(X-OUT-OF-Y) and

OUTPUTS–DELETION(X-OUT-OF-Y) are NP-Hard.

The Table 1 presents the computational complexities of the problems presented
so far. The complexity analysis of VERTEX–DELETION(OR) is presented in the next
section.

λ–DELETION(M)
E OR AND-OR X-Out-Of-Y

Arc NP-H P NP-H NP-H
Vertex NP-H ? NP-H NP-H
Sink NP-H P NP-H NP-H

Table 1. Partial scenario of λ–DELETION(M) complexity.

4. Vertex–Deletion(OR)
We explore different classes of graphs in order to discover features that make the prob-
lem VERTEX–DELETION(OR) NP-hard or solvable in polynomial time. We show that
VERTEX–DELETION(OR) is NP-hard via a 3-SAT reduction.
Lemma 4. VERTEX–DELETION(OR) is NP-Hard.

In general, a wait-for graph on the OR model can be seen as a conglomerate of
several strongly connected components. The problems that can be solved in polynomial
time has one characteristic in common: it suffices to simply solve every knot inG because
no other SCC will turn into a knot after these removals. The next result handles with the
natural question “Can VERTEX–DELETION(OR) be solved in polynomial time when the
input graph is strongly connected (i. e., G is a single knot)?”.
Corollary 5. VERTEX–DELETION(OR) remains NP-Hard even when G is strongly con-
nected.

Now we consider properties of the underlying undirected graph of G.

Since one of the most used architectures in distributed computation is the
user/server achitecture, a intuitively interesting graph class for distributed computation
purposes are bipartite graphs.
Theorem 6. VERTEX–DELETION(OR) remains NP-Hard even when the underlying
undirected graph of G is bipartite, planar and have maximum degree equal to 4.

We proved that even for graphs with ∆(G) = 4 the problem remains NP-Hard.
Furthermore, the problem for graphs with ∆(G) ≤ 2 is trivial [4]. Thus, we explore the
complexity of VERTEX–DELETION(OR) when the underlying undirected subcubic graph
of G (graph with maximum degree three); in this case we obtain aa O(m

√
n) algorithm.

When we study the vertices characteristics, based on the in- and out-degrees, we
are able to phase out unnecessary vertices such as sources and sinks. After that, all vertices



of G are in deadlock. The next step is to continuously analyse graph aspects in order to
establish rules and procedures that may define specific vertices that are part of an optimum
solution.

By classifying the remaining vertices into types, we were able to identify cases
where a knot can be solved with only one removal without spreading to others SCCs.
By analyzing topological characteristics, we can obtain some reductions presented below,
that provide a partial solution and a smaller and more restricted graph to consider.

Observation 1. Any SCC with more than one output to a knot can be disregarded.
Lemma 7. Any SCC C1 that reaches any SCC C2 that is not a knot can be disregarded.
Furthermore, if C1 is at distance 1 of some knot, a reduction is applicable to Q.

From the reductions presented, we have that the graph to be analyzed, without
loss of generality, has only knots that are directed cycles where each vertex in those knots
have an input edge coming from another SCC. Also, all SCCs (which are not a knot) only
reach knots at a distance one. Then, we show that the remaining problem, i.e., freeing the
graph of deadlock reduces to finding a (f, g)-semi-matching in SCCs after applying some
rules of reduction.

Lemma 8. [3] Given a bipartite graph G′ = (K ∪ C, E) and two functions f : k → N
and g : c→ N, where k ∈ K and c ∈ C, find a maximum (f, g)-semi-matching of G′ can
be done in polynomial time.

Finally, we prove that the following theorem holds.

Theorem 9. VERTEX-DELETION(OR) restricted to subcubic graphs can be solved in
O(m

√
n) time.
Such results are summarized in the following table.

VERTEX–DELETION(OR)
Instance Complexity
Weakly connected NP-Hard
Strongly connected NP-Hard
Planar, bipartite, ∆(G) ≥ 4 and ∆(G)+ = 2 NP-Hard
∆(G) = 3 Polynomial

Table 2. Complexity of VERTEX–DELETION(OR) for some graph classes.

References
[1] V. C. Barbosa. The Combinatorics of Resource Sharing. In Models for Parallel and

Distributed Computation, pages 27–52. Springer, 2002.

[2] V. C. Barbosa, A. D. A. Carneiro, F. Protti, and U. S. Souza. Deadlock models in dis-
tributed computation: foundations, design, and computational complexity. In Pro-
ceedings of the 31st Annual ACM Symposium on Applied Computing, pages 538–541.
ACM, 2016.

[3] P. Kolman and J. Kratochvı́l. Graph-Theoretic Concepts in Computer Science: 37th Inter-
national Workshop, WG 2011, Teplá Monastery, Czech Republic, June 21-24, 2011,
Revised Papers, volume 6986. Springer Science & Business Media, 2011.

[4] D. P. Mitchell and M. J. Merritt. A distributed algorithm for deadlock detection and
resolution. In Proceedings of the third annual ACM symposium on Principles of
distributed computing, pages 282–284. ACM, 1984.


