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Abstract. Let lct(G) be the minimum size of a set of vertices that contains at
least one vertex in every longest cycle of a graph G. We show that lct(G) = 1
if G is a 3-tree, and that lct(G) ≤ 2 if G is a 2-connected partial 3-tree.

1. Introduction
It is known that, in every 2-connected graph, every pair of longest cycles intersect each
other in at least two vertices. A natural question asks whether all longest cycles have a
vertex in common in 2-connected graphs. (If the graph is not 2-connected, two longest cy-
cles can be disjoint.) This has in general a negative answer, as the Petersen’s graph shows.
However, there are some graph classes for which this question has a positive answer, such
as classes containing only Hamiltonian graphs [Thomas and Yu 1994, Tutte 1956], and
dually chordal graphs [Jobson et al. 2016]. In this paper we show that the class of 3-trees
also has a positive answer to this question. Observe that 3-trees are not dually chordal
graphs, as they are not clique-Helly graphs, so they are not included in the class addressed
by Jobson et al. [Jobson et al. 2016].

When one cannot find a vertex that is common to all longest cycles in a graph, it
is interesting to look for a set of vertices such that every longest cycle has at least one
vertex in that set. Such a set is called a longest cycle transversal, or just a transversal,
and we look for small transversals, possibly of minimum size. The minimum size of
a transversal is denoted by lct(G). When we cannot determine lct(G) exactly, it is
interesting to search for a good upper bound for it. For every 2-connected graph G
with n vertices, lct(G) ≤ dn/3e [Thomassen 1978]. This bound was later improved
to lct(G) ≤ dn

3
− n2/3

36
e [Rautenbach and Sereni 2014]. Restating what was written at the

end of the previous paragraph, here we show that lct(G) = 1 when G is a 3-tree. We also
show that, when G is a 2-connected partial 3-tree, lct(G) ≤ 2.

2. Preliminaries
Let C be a cycle in a graph G. Sometimes we will refer to C as the set of vertices of C.
We denote by |C| the length of C, that is, the number of edges in C. A triangle in G is
a cycle of length three. Let S be a set of vertices of G. Given a cycle C with at least
one vertex not in S, we say that S fences C if C − S is contained in a single connected
component of G − S, otherwise we say that C crosses S. For an integer t and a set S of
vertices, we say that a cycle C t-touches S if C intersects S at exactly t vertices. Note
that if C 1-touches S then C is fenced by S.

Lemma 1. Let G be a 2-connected graph with a triangle ∆. Let C be the set of all longest
cycles in G that cross ∆. At least two vertices of ∆ are in all cycles of C.



Let X and Y be two subsets of V (G). We denote by CompY (X) the union of the
vertex set of the connected components of G−Y containing at least one vertex of X \Y .
If C is a cycle, then we may write CompY (C) instead of CompY (V (C)). Also, if v
is a vertex, we may write CompY (v) instead of CompY ({v}). The next lemma is an
adaptation of Lemma 6 of de Rezende et al. [De Rezende et al. 2013].
Lemma 2. Let G be a 2-connected graph with a triangle ∆. If there are longest cycles C ′

and C ′′ such that Comp∆(C ′) ∩ Comp∆(C ′′) = ∅, then one of the vertices of ∆ is in all
longest cycles of G.

A 3-tree is defined recursively as follows. A graph that is a triangle is a 3-tree.
Any graph obtained from a 3-tree by adding a new vertex and making it adjacent to all the
vertices of an existing triangle is also a 3-tree. We say that a graph that is a triangle is a
trivial 3-tree, while all the other 3-trees are nontrivial. A graph is a partial 3-tree if it is a
subgraph of a 3-tree. Forbidden minors are known for partial 3-trees.
Lemma 3. [Arnborg et al. 1990] There is no K5-minor in a partial 3-tree.

3. 3-trees
Our goal is to show that all longest cycles intersect in 3-trees. Next we will generalize
Lemmas 7 and 8 of de Rezende et al. [De Rezende et al. 2013] for 3-trees.
Lemma 4. If K is a K4 in a graph G, then either G contains a K5-minor or

∩{Comp∆(v∆) : ∆ is a triangle in K} = ∅,

where v∆ is the vertex of K not in ∆.
Let K be a K4 in a connected graph G. We say that K is 4-fencing if, for each

triangle ∆ in K, there is a longest cycle C in G such that C is fenced by ∆, intersects ∆
at most twice, and satisfies Comp∆(C) = Comp∆(v∆), where v∆ is the vertex of K not
in ∆.
Lemma 5. If, for every triangle ∆ in a nontrivial 3-tree G, there is a longest cycle fenced
by ∆ and intersecting ∆ at most twice, then G contains a 4-fencing K4.

The next lemma is basically a corollary of Lemma 2.
Lemma 6. Let G be a 2-connected graph. If K is a 4-fencing K4 in G and C is a longest
cycle such that CompK(C) ∩Comp∆(v∆) = ∅, where ∆ is a triangle in K and v∆ is the
vertex in K not in ∆, then there is a vertex in K intersecting all longest cycles in G.

Corollary 7. Let G be a 3-tree. Either there exists a vertex intersecting all longest cycles
in G or every 4-fencing K4 in G fences no longest cycle.

The corollary above implies that, in a 3-tree, either there is a vertex intersecting all
longest cycles or every 4-fencing K4 intersects at least twice every longest cycle, because
each such cycle crosses such K4. Next lemma strengthens this result.
Lemma 8. Let G be a 3-tree. Either there exists a vertex intersecting all longest cycles
in G, or no longest cycle in G 2-touches a 4-fencing K4 in G.

So, in a 3-tree G, either there exists a vertex intersecting all longest cycles in G,
or every longest cycle intersects at least three times each 4-fencing K4. If G has a 4-
fencing K4 and no vertex intersects all longest cycles in G, then, for every triangle ∆ in
this K4, there must be a longest cycle 3-touching the K4 at the vertices of ∆.
Theorem 9. In every 3-tree G, there exists a vertex intersecting all longest cycles in G,
that is, lct(G) = 1.



4. Partial 3-trees

Before proving our main result, we give some basic definitions and notation.

A tree-decomposition [Diestel 2010, p. 337] of a graph G is a pair (T,V) consist-
ing of a tree T and a collection V = {Vt : t ∈ V (T )} of bags Vt ⊆ V (G), that satisfies
the following three conditions:

(T1)
⋃

t∈V (T ) Vt = V (G);

(T2) for every uv ∈ E(G), there exists a bag Vt such that u, v ∈ Vt;
(T3) if a vertex v is in two different bags Vt1 and Vt2 , then v is also in every bag Vt such

that t is on the (unique) path from t1 to t2 in T .

The width of (T,V) is the number max{|Vt| − 1 : t ∈ V (T )}, and the tree-width tw(G)
of G is the minimum width of any tree-decomposition of G.

It is known that partial 3-trees are exactly the graphs with tree-width
three [Brandstädt et al. 1999]. Sometimes we are interested in particular tree-
decompositions. The following proposition is a lemma of Bodlaender.

Proposition 10. [Bodlaender 1998] If k is the tree-width of a graph G, then G has a
tree-decomposition (T,V) of width k such that |Vt| = k + 1 for every t ∈ V (T ), and
|Vt ∩ Vt′| = k for every tt′ ∈ E(T ).

Given a node t of T , we say that the connected components of T − t are the
branches of T at t [Heinz 2013]. For a node t′ ∈ V (T − t), we denote by Brancht(t

′) the
branch of T at t where t′ lies. Similarly, for a vertex v ∈ V (G), we denote by Brancht(v)
the branch Brancht(q) of T at t where q is a node of T such that v ∈ Vq.

Lemma 11. Let G be a 2-connected partial 3-tree. Let (T,V) be a tree-decomposition
of G as described in Proposition 10, and let t be a node of T . If lct(G) > 2, then there
exists a longest cycle in G that touches Vt at most once.

Theorem 12. For every 2-connected partial 3-tree G, lct(G) ≤ 2.

Proof. Let (T,V) be a tree-decomposition of G as described in Proposition 10. Assume
by contradiction that lct(G) > 2. By Lemma 11, for every node t ∈ V (T ), there exists a
longest cycle that touches Vt at most once. We create an auxiliary digraph D, that admits
anti parallel arcs, as follows. The nodes of D are exactly the nodes of T . Given a node
t ∈ V (T ), we add the arc tt′ in D if there is a longest cycle C fenced by Vt such that
Brancht(t

′) = Brancht(C). Then, every node of D is the tail of some arc in D.

Let tt′ be the last arc of a maximal directed path in D. As T is a tree, t′t
is also an arc, which implies that there exist two longest cycles Ct and Ct′ such that
Brancht(Ct) = Brancht(t

′) and Brancht′(Ct′) = Brancht′(t), where Ct touches Vt at
most once, and Ct′ touches Vt′ at most once. Note that the bags where the vertices of Ct

lie are only in Brancht(t
′) ∪ {t}, and that the bags where the vertices of Ct′ lie are only

in Brancht′(t) ∪ {t′}. As Brancht(t
′) and Brancht′(t) are disjoint, Ct ∩ Ct′ ⊆ Vt ∪ Vt′ .

Note that Ct does not contain the only vertex in Vt \ Vt′ , and that Ct′ does not contain
the only vertex in Vt′ \ Vt. But then Ct and Ct′ intersect each other in just one vertex, a
contradiction to the fact that G is 2-connected.



5. Final remarks
Similar proofs can lead to more general results. Namely, that lct(G) ≤ ω(G) − 3 for
every 2-connected chordal graph, where ω(G) is the size of a maximum clique of G, and
that lct(G) ≤ k − 1 for every 2-connected graph of tree-width k. This would imply that
lct(G) = 1 for 2-connected partial 2-trees and for 2-connected planar graphs that are also
chordal.

Similar but weaker results can be obtained when considering paths instead of cy-
cles. One difficulty that arises is that paths can have their ends in different connected
components. That is, given a longest path P with ends x and y, and a triangle ∆, we can
have that Comp∆(x) 6= Comp∆(y). This generates more possibilities, and for this reason
the results are not as strong as for cycles.
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