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Abstract. A labelling of a graph G is a mapping π : S → L, where L ⊂ R
and S = E(G) or S = V (G) ∪ E(G). If S = E(G), π is an L-edge-labelling
and, if S = V (G) ∪ E(G), π is an L-total-labelling. For each v ∈ V (G), the
colour of v under π is defined as cπ(v) =

∑
uv∈E(G) π(uv) if π is an L-edge-

labelling; and cπ(v) = π(v) +
∑

uv∈E(G) π(uv) if π is an L-total-labelling. The
pair (π, cπ) is a neighbour-distinguishing-L-edge (total)-labelling if π : S → L
is an edge (total)-labelling and cπ(u) 6= cπ(v), for every edge uv ∈ E(G).
The 1,2,3-Conjecture states that every simple graph with no isolated edge has
a neighbour-distinguishing-L-edge-labelling with L = {1, 2, 3}. In this work,
we verify the 1,2,3-Conjecture for powers of paths and powers of cycles and we
also show that powers of cycles have a neighbour-distinguishing-{a, b}-total-
labelling, a, b ∈ R, a 6= b.

1. Introduction
Let G be a simple graph with vertex set V (G) and edge set E(G). We denote an edge
e ∈ E(G) by uv where u and v are its endpoints. An element of G is a vertex or an edge
of G. As usual, the degree of a vertex v ∈ V (G) is denoted by dG(v). We say that G is
k-regular if all of its vertices have degree k.

For S = E(G) or S = V (G) ∪ E(G) and a set L ⊂ R, a labelling of G is a
mapping π : S → L. If S = E(G), π is an L-edge-labelling and, if S = V (G) ∪ E(G),
π is an L-total-labelling. Given a labelling π of G, we define cπ : V (G) → C, C a
set of colours, such that, for each v ∈ V (G), cπ(v) =

∑
uv∈E(G) π(uv), if π is an L-

edge-labelling, and cπ(v) = π(v) +
∑

uv∈E(G) π(uv), if π is an L-total-labelling. The
mapping cπ is a proper-vertex-colouring of G if cπ(u) 6= cπ(v), for every edge uv ∈
E(G). We say that the pair (π, cπ) is a neighbour-distinguishing-L-edge-labelling when
π is an L-edge-labelling and cπ is a proper-vertex-colouring. Similarly, taking π an L-
total-labelling in the previous definition, we say that (π, cπ) is a neighbour-distinguishing-
L-total-labelling. In this work, [k] denotes the set of consecutive integers {1, . . . , k}.

In 2004, Karónski et al. [4] proposed the problem of determining the least positive
integer k needed to obtain a neighbour-distinguishing-[k]-edge-labelling of an arbitrary
simple graph G without isolated edges. This problem has attracted attention and the least
value of k known is due to Kalkowski et al. [3], who proved that every graph with no
isolated edge has a neighbour-distinguishing-[5]-edge-labelling. In their work, Karónski
et al. observed that all the families of graphs they studied have a neighbour-distinguishing-
[3]-edge-labelling. Based on this, they posed the following conjecture.
Conjecture 1 (Karónski et al. [4]). If G is a simple graph with no isolated edge, then G
has a neighbour-distinguishing-[3]-edge-labelling.



Conjecture 1 is known as the 1,2,3-Conjecture. Karónski et al. also observed that
almost all graphs they investigated had a neighbour-distinguishing-[2]-edge-labelling.
Later, Dudek and Wajc [1] proved that deciding whether a graph has a neighbour-
distinguishing-[2]-edge-labelling isNP-complete. Since then, neighbour-distinguishing-
[2]-edge-labellings have been investigated for families of graphs. Recently, Thomassen et
al. [9] completely characterized the bipartite graphs that have a neighbour-distinguishing-
[2]-edge-labelling and, using results from nowhere-zero-3-flows [8], proved that every
nonbipartite (6p − 7)-edge-connected graph of chromatic number at most p (where p is
any odd natural number ≥ 3) has a neighbour-distinguishing-[2]-edge-labelling.

Motivated by the neighbour-distinguishing-edge-labelling problem, Przybyło and
Woźniak [7] introduced the related problem of neighbour-distinguishing-total-labellings
and studied it for some classes of graphs. They also posed the 1,2-Conjecture that states
that every simple graph has a neighbour-distinguishing-[2]-total-labelling. Hulgan et
al. [2] generalised this problem considering L = {a, b}, a, b ∈ R, a 6= b, approaching it
for families of graphs.

In this work, we verify the 1,2,3-Conjecture for powers of cycles and powers of
paths. Moreover, we show that every power of cycles has a neighbour-distinguishing-
{a, b}-total-labelling, for a, b ∈ R, a 6= b.

2. Preliminaries
Given a simple graph G and two distinct vertices u, v ∈ V (G), the distance between u
and v in G is the number of edges in a shortest path connecting u and v, and is denoted by
dG(u, v). The k-th power Gk of a graphG is the simple graph that has vertex set V (Gk) =
V (G), with distinct vertices u, v being adjacent in Gk if and only if dG(u, v) ≤ k.

As usual, a path with n vertices is denoted by Pn and a cycle with n vertices is
denoted by Cn. When G ∼= Pn, graph Gk is called power of paths and is denoted by
P k
n . Similarly, when G ∼= Cn, graph Gk is called power of cycles and is denoted by Ck

n.
Note that P k

n
∼= Kn, when k ≥ n − 1, and Ck

n
∼= Kn, when k ≥ bn/2c. Since the

1,2,3-Conjecture has been verified for paths, cycles and complete graphs [4], in this work
we consider only powers of paths P k

n with 1 < k < n − 1 and powers of cycles Ck
n

with 1 < k < bn/2c. The next results, related to neighbour-distinguishing labellings of
graphs, are used in the proofs of Section 3.

Proposition 2. Let (π, cπ) be a neighbour-distinguishing-[k]-total-labelling of a graph
G. If π(v) = p, for every v ∈ V (G), then (π′, cπ′) such that π′(uv) = π(uv), for every
uv ∈ E(G), is a neighbour-distinguishing-[k]-edge-labelling.

Lemma 3 (Przybyło and Woźniak [7]). If G ∼= Kn, then G has a neighbour-
distinguishing-[2]-total-labelling (π, cπ), called canonical labelling, such that, either
C = {n, . . . , 2n−1} or C = {n+1, . . . , 2n}. Moreover, if either n = 3 and C = {4, 5, 6}
or n ≥ 4, then π has at least two vertices with label 2.

Lemma 4. Let G ∼= Kn with n ≥ 3. Let (π′, cπ′) be a canonical labelling, with
C = {4, 5, 6} for n = 3. Then, (π′, cπ′) can be modified so as to obtain a neighbour-
distinguishing-[3]-total-labelling (π, cπ) such that: (i) for every v ∈ V (G), π(v) = 1;
and (ii) if cπ′(v) = maxu∈V (G){cπ′(u)}, then cπ(v) ∈ {cπ′(v), cπ′(v) + 1}; otherwise,
cπ(v) = cπ′(v).



Proof. Let G and (π′, cπ′) as stated in the hypothesis. Let S = {v ∈ V (G) : π′(v) = 2}.
Let M be a maximum matching of G[S]. Adjust notation so that, if |S| ≡ 1 (mod 2),
the unsaturated vertex u ∈ S has cπ′(u) = minv∈S{cπ′(v)}. First, define π(v) = 1, if
v ∈ S, and π(v) = π′(v), otherwise. If e ∈M , π(e) = π′(e)+1, otherwise π(e) = π′(e).
Note that every vertex v ∈ S has its label decreased by one and, if |S| ≡ 0 (mod 2), v
has the label of exactly one of its incident edges increased by one. Therefore, cπ(v) =
cπ′(v). If |S| ≡ 1 (mod 2), let w ∈ S such that cπ′(w) = maxv∈V (G){cπ′(v)}. Define
π(uw) = π′(uw) + 1. This implies that cπ(u) = cπ′(u) and cπ(w) = cπ′(w) + 1. Since
cπ′(w) = maxv∈V (G){cπ′(v)}, we conclude that cπ is a proper-vertex-colouring of G.
Moreover, π : V (G) ∪ E(G)→ {1, 2, 3} and the result follows.

Theorem 5 (Luiz et al. [5, 6]). If G ∼= P k
n or G ∼= Ck

n, then G has a neighbour-
distinguishing-[2]-total-labelling.

3. Results
In this section, we state our main results.

Theorem 6. IfG is a simple graph such thatG ∼= P k
n orG ∼= Ck

n, thenG has a neighbour-
distinguishing-[3]-edge-labelling.

Outline of the proof. Let G ∼= P k
n or G ∼= Ck

n. We assume G is not a path, a cycle, or a
complete graph, since the result is known for these cases. If G ∼= P k

n , with n ≥ 2k + 2,
or G ∼= Ck

n, we write n = α(k + 1) + r such that 0 ≤ r ≤ k, α ≥ 2, and r, α ∈ N. In
these cases, we take a partition P = {B0, . . . , Bα} of V (G) into blocks Bi such that each
block induces a complete graph. Note that P comprises α blocks with k + 1 vertices and
one block with r vertices. Now, if G ∼= P k

n with k + 1 < n < 2k + 2, we take a partition
P = {B0, B1, B2} of V (G) such that |B0| = |B2| = b(n− k)/2c and k ≤ |B1| ≤ k+1.

We consider seven cases: (i) G ∼= P k
n and n ≥ 2k + 2; (ii) G ∼= P k

n and k + 1 <
n < 2k + 2; (iii) G ∼= Ck

n, k ≥ 3 and r 6= 1; (iv) G ∼= Ck
n, k ≥ 3 and r = 1; (v) G ∼= Ck

n,
k = 2 and r = 0; (vi) G ∼= Ck

n, k = 2 and r = 1; and (vii) G ∼= Ck
n, k = r = 2.

In order to prove the result, by Proposition 2, it suffices to show that G has a
neighbour-distinguishing-[3]-total-labelling (π, cπ) such that π(v) = 1 for every v ∈
V (G). Such a labelling (π, cπ) is obtained by modifying the neighbour-distinguishing-[2]-
total-labelling (π′, cπ′) of G constructed in the proof of Theorem 5, using the technique
presented in the proof of Lemma 4: for each vertex v ∈ V (G), with π′(v) = 2, we assign
π(v) = 1 and increase the labels of some selected edges by one, maintaining the property
that any two adjacent vertices have distinct colours.

In this extended abstract, we exemplify this construction for case (i), for which
G ∼= P k

n and n ≥ 2k + 2. Let (v0, . . . , vn−1) be a linear order of V (Pn). Thus, for
0 ≤ i ≤ α − 2, block Bi comprises the k + 1 consecutive vertices, starting from vi(k+1)

and following the linear order. Block Bα−1 comprises the set of r consecutive vertices
starting from v(α−1)(k+1), and the remaining k + 1 vertices comprise block Bα. Note that,
if r = 0, then Bα−1 = ∅. Considering this partition P of V (G), (π′, cπ′) is defined as
follows: (i) every element in G[B0] receives label 2; (ii) every element in G[Bα] receives
label 1; (iii) for 1 ≤ i ≤ α − 1, G[Bi] receives a canonical labelling with colour set
C = {|Bi| + 1, . . . , 2|Bi|}, such that any two vertices vk, vl ∈ Bi have cπ′(vk) < cπ′(vl)
if and only if k < l; and (iv) the remaining edges receive label 1.



By the definition of (π′, cπ′), block Bα has no vertices with label 2. Moreover, by
Lemma 3, for 0 ≤ i ≤ α− 2, the complete subgraph G[Bi] has at least two vertices with
label 2. Thus, we modify (π′, cπ′) so as to obtain (π, cπ) as follows. For 0 ≤ i ≤ α−2, we
apply Lemma 4 toG[Bi] obtaining: (i) for every v ∈ V (Bi), π(v) = 1; and (ii) if cπ′(v) =
maxv∈Bi{cπ′(v)}, then cπ(v) ∈ {cπ′(v), cπ′(v) + 1}; otherwise, cπ(v) = cπ′(v). In order
to conclude (π, cπ), it remains to analise block Bα−1. If the number of vertices with label
2 in Bα−1 is even, apply Lemma 4 to G[Bα−1]. Otherwise, (i) choose any w ∈ Bα−1 with
π′(w) = 2 and take x ∈ Bα−2 with maximum colour under cπ′; (ii) apply Lemma 4 to
G[Bα−1\{w}]; (iii) and let π(w) = 1 and π(wx) = π′(wx) + 1. Note that the resulting
labelling is a neighbour-distinguishing-[3]-total-labelling (π, cπ) ofG. In order to see this,
note that π(e) ∈ {1, 2, 3}, e ∈ E(G), cπ(v) = cπ′(v), v ∈ V (G)\{vi(k+1)+k : 0 ≤ i ≤
α−2}, and cπ′(v) ≤ cπ(v) ≤ cπ′(v)+2, otherwise. Note that the last mentioned vertices,
that eventually had their colours changed, are pairwise nonadjacent and have colours in π′

that are greater than the colours of their neighbours. Therefore, any two adjacent vertices
have distinct colours under cπ, and the result follows.

Hulgan et al. [2] proved that, for a, a′, b, b′ ∈ R, with a 6= b and a′ 6= b′, a
regular graph G has a neighbour-distinguishing-{a, b}-total-labelling if and only if it has
a neighbour-distinguishing-{a′, b′}-total-labelling. By noting that every power of cycles
is a regular graph and has a neighbour-distinguishing-[2]-total-labelling, we obtain the
following corollary.

Corollary 7. Every power of cycles has a neighbour-distinguishing-{a, b}-total-
labelling, for a, b ∈ R, a 6= b.
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