
The Least-Dependency Constrained Spanning Tree Problem
Luiz Alberto Viana1, Manoel Campêlo1

1Mestrado e Doutorado em Ciência da Computação – Universidade Federal do Ceará

Abstract. We introduce the Least-Dependency Constrained Spanning Tree
Problem, which consists of finding a spanning tree where each edge has at least
one edge of its dependency set, if non-empty, also in the tree. The dependencies
on the input graph G are described by a digraph D where the vertices are the
edges of G, and the in-neighbors of a vertex are its dependency set. We show
that the optimization problem is NP-hard even if G is a chordal cactus with max-
imum degree 3 or diameter at most 2, and D is a disjoint union of arborescences
of height 2. The same complexity is proved when G is planar bipartite, and each
component of D is an oriented cycle or an anti-arborescence of height 1. We
also report two polynomial cases.

1. Introduction
Finding a minimum spanning tree is known to be easy, but extra requirements for the
tree can turn the problem NP-hard. One of the NP-hard variations occurs when con-
flict constraints over pairs of edges are imposed [Darmann et al. 2011, Zhang et al. 2011,
Samer and Urrutia 2015]. These constraints are naturally described by an undirected sim-
ple graph, where each edge is a pair of conflicting edges of the input graph. Inspired by
this problem, we introduce the Least-Dependency Constrained Spanning Tree problem,
whose constraints are represented by a directed graph.

Let G = (V,E) be a connected graph and D = (E,A) be a digraph whose ver-
tices are the edges of G. e1 ∈ E is a dependency of e2 ∈ E if (e1, e2) ∈ A. The
Least-Dependency Constrained Spanning Tree Problem (L-DCST(G,D)) consists in de-
ciding whether there is a spanning tree T of G such that each edge in T either has an
empty dependency set or at least one of its dependencies is also in T . The corresponding
optimization version, where a weighting function w : E → R+ is considered and one
wants to minimize the weight of tree, will be denoted L-DCMST(G,D,w).

Applications for this problem appear, for instance, in communication systems
when a link can only be used if the message arrives through certain other links, due to
protocol conversion restrictions on the nodes of the network [Viana 2016].

In this text, we use many concepts from graph theory. For those not familiar with
them, we refer to classical books in the area such as [Douglas 2001].

2. NP-completeness
We show that L-DCST(G,D) is NP-complete even if the structure of both G and D are
very simple. We use a reduction from 2 in 3 3-SAT.

An NP-complete variation of 3-SAT is 1 in 3 3-SAT which consists of decid-
ing whether a formula can be satisfied with every clause having exactly one true literal
[Gary and Johnson 1979]. We can define 2 in 3 3-SAT analogously. Note that 1 in 3
3-SAT can be reduced to 2 in 3 3-SAT by negating the literals of all clauses.

Given an instance of 2 in 3 3-SAT, we build an instance of L-DCST(G,D) as
illustrated in Figure 1. We start G with a universal vertex v; for each variable x, v is con-
nected to vertices v1x and v2x by edges ex and ex, respectively, and v1x and v2x are neighbors
by edge ax; for each clause C = l1∨ l2∨ l3, v is connected to vertices v1C and v2C by edges
eCl1 and eCl2 , respectively, while v1C and v2C are linked by edge eCl3 . We build D as follows:
there are arcs from ax to ex and ex, for each variable x; there is an arc from el to eCl if
literal l occurs in clause C. Note that G is a chordal cactus (actually, a union of triangles
whose pairwise intersection is v), and D is a union of arborescences.

v

v1x v2x

v1C v2C

ex ex

ax

eCl1 eCl2

eCl3

(a) Graph G.

ax

ex

eCi
x eCk

x

ex

e
Cj

x

(b) Digraph D

Figure 1. Illustration of the 2 in 3 3-SAT reduction.

One can check that the 2 in 3 3-SAT instance has a “yes” answer if, and only if, the
corresponding instance L-DCST(G,D) is feasible, which leads to the following theorem.

Theorem 1 L-DCST(G,D) is NP-complete, even if G is a chordal cactus whose diameter
is 2, and D is a union of arborescences whose height is 2.

Notice that G is planar and has arbitrary ∆(G). We can rearrange its triangles to
get ∆(G) = 3. We make the triangles (related to clauses and variables) disjoint and link
them as in Figure 2.

Figure 2. Illustration of the 2 in 3 3-SAT reduction with ∆(G) = 3.

We now present a reduction to L-DCMST(G,D) from 3-SAT. It gives other in-
sights on the hardness of the problem.

Given a formula, an instance of L-DCMST(G,D) is built as follows. G has ver-
tices u, v and v′, and edges a = {u, v} and a′ = {u, v′}; for each clause C, there is a
vertex vC and an edge eC = {u, vC}; for each variable x and each clause C containing x
or x, there is a vertex vCx and the edges eCx = {v, vCx } and eCx = {v′, vCx }. In the digraph
D, a and a′ are mutually dependent; for each clause C = l1 ∨ l2 ∨ l3, eCl1 , eCl2 and eCl3 are
the dependencies of eC ; for each literal l, there is an oriented cycle with vertices eCl , for
all C containing l. See Figure 3.

A truth valuation of the formula clearly translates into a feasible tree. Conversely,
let T be a feasible tree. Due to connectivity of T and the mutual dependencies between

vCx

uv v′

vC

eCx eCx

a a′

eC

(a) Graph G.

a1 a2

eC1
l eC2

l

eCi
le

Cpl
l

eCl1 eCl2 eCl3

eC

(b) Digraph D. C1, . . . , Ci, . . . , Cpl
contain l.

Figure 3. Illustration of the 3-SAT reduction.

a and a′, these two edges as well as eC , for all clause C, must be chosen. Then, if
C = l1 ∨ l2 ∨ l3, the oriented star in D related to C ensures that eCl is in T , for some
l ∈ {l1, l2, l3}, and so eC

l
is not in T (since T is acyclic). Besides, the oriented cycle in D

related to l guarantees that eCl is in T , for all C containing l. This indicates a consistent
value for every variable that makes the formula satisfiable. Therefore, the following result
holds.

Theorem 2 L-DCMST(G,D) is NP-Complete, even if G is planar bipartite with diameter
3, and D is a union of oriented cycles and anti-arborescences of height 1.

3. Polynomial cases
We present two cases where L-DCMST(G,D,w) is solvable in polynomial time. In both
of them, we restrict the structure of D so that the problem can be decomposed in a poly-
nomial number of Minimum Spanning Tree subproblems.

Theorem 3 If D has O(log2(|V (G)|)) components, and each of them is either an oriented
cycle or an arborescence whose subjacent graph is a star, DCMST(G,D,w) can be solved
in polynomial time.

Proof. If D is a directed cycle, either G is a tree or L-DCMST(G,D,w) is infeasible.
When D is an arborescence whose subjacent graph is a star, we delete its root r and
contract the related edge of G, obtaining G′ (we do this again in case r is a leaf, obtaining
G′′) and solve the Minimum Spanning Tree Problem for the resulting graph G′ (G′′).

When D is a union of oriented cycles and directed stars, we have a choice to
make for each of its (say, k) components: for each directed cycle, we decide to include
none or all of its edges in the solution; for each directed star, we decide to include or
not the root of D (and its unique descendant node, if the root is a leaf) and then allow
or forbid all the other vertices of the star (edges of G) to take part of the solution. This
way, we have 2k subproblems to consider, each of them solvable in polynomial time. If
k = O(log2(|V (G)|)), then all these subproblems can be solved in polynomial time.

Notice the importance of restricting the number of components of D in the above
theorem. Theorem 2 shows that the problem may become hard otherwise.

Theorem 4 L-DCMST(G,D,w) can be solved in polynomial time, if D is an arbores-
cence whose subjacent graph is a caterpillar.

Proof. Let D = (P ∪ L,A) be an arborescence, where P induces the main path and L
comprises the leaves of the subjacent caterpillar. First, suppose that D is rooted at p1 ∈ P .
Then, p1 has exactly one or two neighbors in P .

In the first case, consider P = {p1, p2, . . . , pk}. Note that there is an arc from pi
to pi+1, 1 ≤ i ≤ k− 1. Let Li ⊆ L be the set of leaves adjacent to pi, 1 ≤ i ≤ k. Observe
that L-DCMST(G,D,w) can be decomposed into k subproblems. The ith subproblem
is the Minimum Spanning Tree Problem where the edges from {p1, p2, . . . , pi} must be
chosen and the edges from L1 ∪ · · · ∪ Li can be chosen (it may be infeasible if the first
set induces a cycle in G). Since each of these subproblems can be solved in polynomial
time, and there are k of them, L-DCMST(G,D,w) can be solved in polynomial time with
its optimal solution being the one whose cost is minimum among the optimal solutions of
the feasible subproblems.

If p1 has two neighbors in P , consider P = {p1, p11, p12, . . . , p1k, p21, p22, . . . , p2l },
k + l = |P | − 1, such that p1, p11, p

1
2, . . . , p

1
k and p1, p

2
1, p

2
2, . . . , p

2
l are directed paths in

D. Also, consider L1 ⊆ L as the set of leaves incident to p1, and let L1
i , L

2
j ⊆ L be the

analogously defined sets for p1i and p2j , respectively, 1 ≤ i ≤ k, 1 ≤ j ≤ l. Note L-
DCMST(G,D,w) can be decomposed into kl subproblems. We index the subproblems
with tuples (i, j), 1 ≤ i ≤ k, 1 ≤ j ≤ l. The subproblem (i, j) is the Minimum Spanning
Tree Problem for the subgraph of G containing p1, p1a, p2b , L

1
a and L2

b edges, 1 ≤ a ≤ i,
1 ≤ b ≤ j, which is infeasible if the p1, p1a and p2b edges induce a cycle. Similarly as
in the first case, L-DCMST(G,D,w) can be solved in polynomial time with its optimal
solution being the one whose cost is minimum among the optimal solutions of the feasible
subproblems.

To finish the proof, we consider D rooted at an L vertex. It is clear that the
corresponding edge must be part of any feasible solution for DCMST(G,D,w). Thus,
we contract it and fall back into the previous cases.

References
Darmann, A., Pferschy, U., Schauer, J., and Woeginger, G. J. (2011). Paths, trees and

matchings under disjunctive constraints. Discrete Applied Math., 159(16):1726 – 1735.

Douglas, B. (2001). West. Graph Theory. Prentice Hall, Upper Saddle River, NJ.

Gary, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the
Theory of NP-completeness.

Samer, P. and Urrutia, S. (2015). A branch and cut algorithm for minimum spanning trees
under conflict constraints. Optimization Letters, 9(1):41–55.

Viana, L. A. (2016). Árvore geradora com dependências mı́nima. Master’s thesis, Federal
University of Ceará.

Zhang, R., Kabadi, S., and Punnen, A. (2011). The minimum spanning tree problem with
conflict constraints and its variations. Discrete Optimization, 8(2):191 – 205.

