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Abstract. A path (resp. cycle) decomposition of a graph G is a set of edge-
disjoint paths (resp. cycles) of G that covers the edge-set of G. Gallai (1966)
conjectured that every graph on n vertices admits a path decomposition of size
at most b(n + 1)/2c, and Hajós (1968) conjectured that every Eulerian graph
on n vertices admits a cycle decomposition of size at most b(n − 1)/2c. In this
paper, we verify Gallai’s Conjecture for series–parallel graphs, and for graphs
with maximum degree 4. Moreover, we show that the only graphs in these classes
that do not admit a path decomposition of size at most bn/2c are isomorphic to
K3, K5 or K5 − e. The technique developed here is further used to present a
new proof of a result of Granville and Moisiadis (1987) that states that Eulerian
graphs with maximum degree 4 satisfy Hajós’ Conjecture.

Resumo. Uma decomposição de um grafo G em caminhos (resp. circuitos) é
um conjunto de caminhos (resp. circuitos) arestas-disjuntos de G que cobre
o conjunto de arestas de G. Gallai (1966) conjecturou que todo grafo com n
vértices admite uma decomposição em caminhosD tal que |D| ≤ b(n+1)/2c, e
Hajós (1968) conjecturou que todo grafo Euleriano com n vértices admite uma
decomposição em circuitos D tal que |D| ≤ b(n − 1)/2c. Neste trabalho, nós
provamos a Conjectura de Gallai para grafos série-paralelos, e para grafos com
grau máximo 4. Além disso, nós mostramos que os únicos grafos nessas classes
que não admitem uma decomposição D tal que |D| ≤ bn/2c são isomorfos a
K3, K5 e K5− e. A técnica desenvolvida aqui é também usada para apresentar
uma nova prova de um resultado de Grainwille e Moisiadis (1987) que diz que
grafos Eulerianos com grau máximo 4 satisfazem a Conjectura de Hajós.
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1. Introduction
A decomposition D of a graph G is a set {H1, . . . , Hk} of edge-disjoint subgraphs of G
that cover the edge-set of G. We say that D is a path (resp. cycle) decomposition if Hi is
a path (resp. cycle) for i = 1, . . . , k. We say that a path (resp. cycle) decomposition D of
a graph (resp. an Eulerian graph) G is minimum if for any path (resp. cycle) decomposi-
tionD′ of G we have |D| ≤ |D′|. The size of a minimum path (resp. cycle) decomposition
is called the path (resp. cycle) number of G, and is denoted by pn(G) (resp. cn(G)). In
this paper, we focus in the following conjectures concerning minimum path and cycles
decompositions of graphs (see [Bondy 2014, Lovász 1968]).

Conjecture 1 (Gallai, 1966) If G is a connected graph with n vertices, then pn ≤ bn+1
2
c.

Conjecture 2 (Hajós, 1968) If G is an Eulerian graph with n vertices, then cn ≤ bn−1
2
c.

Although these conjectures are very similar, the results obtained towards their verification
are distinct. In 1968, Lovász proved that a graph with n vertices can be decomposed into
at most bn/2c paths and cycles. A consequence of this result is that if G is a graph with
at most one vertex of even degree, then pn(G) = bn/2c. Pyber (1996) and Fan (2005)
extended this result, but the conjecture is still open. In [Botler and Jiménez 2017], one
of the authors verified Conjecture 1 for a family of even regular graphs, and Jiménez and
Wakabayashi (2014) verified it for a family of triangle-free graphs.

In another direction, Geng, Fang and Li (2015) verified Conjecture 1 for maximal
outerplanar graphs and 2-connected outerplanar graphs, and Favaron and Kouider (1988)
verified it for Eulerian graphs with maximum degree 4. While we were writing this paper,
we learned that Bonamy and Perrett [Bonamy and Perrett 2016] verified Conjecture 1 for
graphs with maximum degree 5.

Conjecture 2, on the other hand, was only verified for graphs with maximum de-
gree 4 [Granville and Moisiadis 1987] and for planar graphs [Seyffarth 1992].

In this paper, we present a technique that showed to be useful to deal with both
Gallai’s and Hajós’ Conjectures. Our technique consists of finding, given a graph G, a
special subgraph H , which we call a reducing subgraph of G, that have small path or
cycle number compared to the number of vertices of G that are isolated in G − E(H).
In this paper we focus on series–parallel graphs and graphs with maximum degree 4. We
verify Gallai’s and Hajós’ Conjectures for these classes in Section 2 and 3, respectively.
Due to space limitations, we present only the sketch of some proofs.

2. Reducing subgraphs and Gallai’s Conjecture
Let G be a graph and let H be a subgraph of G. Given a positive integer r, we say
that H is an r-reducing subgraph of G if G− E(H) has at least 2r isolated vertices and
pn(H) ≤ r. The following lemma arises naturally.

Lemma 1 Let G be a graph and H ⊆ G be an r-reducing subgraph of G. If pn(G −
E(H)) ≤ bn/2c − r, then pn(G) ≤ bn/2c.

In order to verify Conjecture 1 for graphs with maximum degree 4, we first ex-
tend the results in [Geng et al. 2015] by proving that Gallai’s Conjecture holds for series–
parallel graphs, which are precisely the graphs with no subdivision of K4. The proof of
the next theorem relies on the fact that series–parallel graphs with at least four vertices



contain at least two non-adjacent vertices of degree at most 2. This fact is easy to verify,
since series-parallel graphs are also the graphs with treewidth at most 2.

Theorem 2 Let G be a connected graph on n vertices. If G has no subdivision of K4,
then pn(G) ≤ bn/2c or G is isomorphic to K3.

Sketch of the proof. For a contradiction, let G be a minimum counter-example for the
statement. It is not hard to verify that G has at least five vertices. Thus, let u, v be two
non-adjacent vertices of degree at most 2. We can show that u and v have at most one
neighbor in common, which implies that there is a path P containing both u and v as
internal vertices. Let H be the graph consisting of P together with the components of
G−E(P ) that isomorphic to K3. We can show that H is an r-reducing subgraph and that
pn(G− E(H)) ≤ bn/2c − r. Therefore, Lemma 1 concludes the proof.

The same technique verifies Conjecture 1 for planar graphs with girth at least 6.

Theorem 3 If G is a planar graph on n vertices and girth at least 6, then pn(G) ≤ bn/2c.
The next theorem verifies Conjecture 1 for graphs with maximum degree 4.

Theorem 4 If G is a connected graph on n vertices and has maximum degree 4, then
pn(G) ≤ bn/2c or G is isomorphic to K3, K5 or to K−5 .

Sketch of the proof. For a contradiction, let G be minimum counter-example for the
statement. By Theorem 2, we may suppose that G contains a subdivision H of K4. Let
v1, v2, v3, v4 be the vertices of H with degree 3, and let S be the set of edges incidents
to vi in G − E(H), for i = 1, 2, 3, 4. The rest of the proof depends on the structure of
the subgraph of G induced by S. We analyze one of the possible cases. Suppose that
there are distinct vertices x, y in V (G) such that S ⊆ {xv1, xv2, yv3, yv4}. It is not hard
to check that H + S can be decomposed into two paths, and v1, v2, v3, v4 are isolated
vertices in G − E(H) − S. Now, let H ′ be the graph consisting of H + S together with
the components of G− E(H)− S that are isomorphic to K3, K5, or K5 − e. Again, we
can show that H ′ is an r-reducing subgraph and that pn(G − E(H) − S) ≤ bn/2c − r.
Lemma 1 concludes the proof.

3. Reducing subgraphs and Hajós’ Conjecture
When dealing with Conjecture 2, the same strategy holds: we first verify Conjecture 2 for
graphs with no subdivision of K4, and then we show how to extend subdivisions of K4

in order to obtain a (cycle) reducing subgraph. Given a positive integer r, we say that
an Eulerian subgraph H of an Eulerian graph G is an r-cycle reducing subgraph of G if
G− E(H) has at least 2r isolated vertices and cn(H) ≤ r. Analogously to Section 2 we
obtain the following Lemma.

Lemma 5 Let G be an Eulerian graph and H ⊂ G be an r-cycle reducing subgraph of
G. If cn(G− E(H)) ≤ b(n− 1)/2c − r, then cn(G) ≤ b(n− 1)/2c.

The next theorems are the main results of this section.

Theorem 6 If G is an Eulerian graph with n non-isolated vertices and with no subdivi-
sion of K4, then cn(G) ≤ b(n− 1)/2c.

Sketch of the proof. For a contradiction, let G be minimum counter-example for the
statement. Let u, v be vertices of degree at most 2 in G. It is not hard to prove that G



is 2-connected, hence there is a cycle C in G containing u and v. The cycle C is a 1-
cycle reducing subgraph of G, and by the minimality of G, we have cn(G − E(C)) ≤
b(n− 1)/2c − 1. Therefore, Lemma 5 concludes the proof.

Theorem 7 If G is an Eulerian graph with n vertices and maximum degree 4, then
cn(G) ≤ b(n− 1)/2c.
Sketch of the proof. For a contradiction, let G be minimum counter-example for the
statement. By Theorem 6, we may suppose that G contains a subdivision H of K4. Thus,
G−E(H) contains four vertices, say v1, v2, v3, v4, with degree 1. We can suppose, without
loss of generality, that G − E(H) contains paths P,Q joining v1 to v2 and v3 to v4,
respectively. We can prove that the subgraph H ′ = H + P + Q is an r-cycle reducing
subgraph of G and that cn(G− E(H ′)) ≤ bn/2c − r. Lemma 5 concludes the proof.

4. Concluding remarks
Reducing subgraphs have allowed us to obtain both new results and new proofs for known
results. Also, this work provides literature with a technique that can be applied at the
same time to both Gallai’s and Hajós’ Conjectures. In a forthcoming work we apply this
technique to verify Conjectures 1 and 2 for partial 3-trees.
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