On a joint technique for Hajós' and Gallai’s Conjectures *

Fábio Botler ${ }^{1}$, Maycon Sambinelli ${ }^{2}$, Rafael S. Coelho ${ }^{3}$, Orlando Lee ${ }^{2}$
${ }^{1}$ Facultad de Ciencias Físicas y Matematicas - Universidad de Chile (UChile) Santiago - Chile
${ }^{2}$ Instituto de Computação - Universidade Estadual de Campinas (Unicamp)
Campinas, SP - Brasil
${ }^{3}$ Instituto Federal do Norte de Minas Gerais (IFNMG)
Montes Claros, MG - Brasil
fbotler@dii.uchile.cl
\{msambinelli,lee\}@ic.unicamp.br
rafael.coelho@ifnmg.edu.br

Abstract

A path (resp. cycle) decomposition of a graph G is a set of edgedisjoint paths (resp. cycles) of G that covers the edge-set of G. Gallai (1966) conjectured that every graph on n vertices admits a path decomposition of size at most $\lfloor(n+1) / 2\rfloor$, and Hajós (1968) conjectured that every Eulerian graph on n vertices admits a cycle decomposition of size at most $\lfloor(n-1) / 2\rfloor$. In this paper, we verify Gallai's Conjecture for series-parallel graphs, and for graphs with maximum degree 4 . Moreover, we show that the only graphs in these classes that do not admit a path decomposition of size at most $\lfloor n / 2\rfloor$ are isomorphic to K_{3}, K_{5} or $K_{5}-e$. The technique developed here is further used to present a new proof of a result of Granville and Moisiadis (1987) that states that Eulerian graphs with maximum degree 4 satisfy Hajós' Conjecture.

Resumo. Uma decomposição de um grafo G em caminhos (resp. circuitos) é um conjunto de caminhos (resp. circuitos) arestas-disjuntos de G que cobre o conjunto de arestas de G. Gallai (1966) conjecturou que todo grafo com n vértices admite uma decomposição em caminhos \mathcal{D} tal que $|\mathcal{D}| \leq\lfloor(n+1) / 2\rfloor$, e Hajós (1968) conjecturou que todo grafo Euleriano com n vértices admite uma decomposição em circuitos \mathcal{D} tal que $|\mathcal{D}| \leq\lfloor(n-1) / 2\rfloor$. Neste trabalho, nós provamos a Conjectura de Gallai para grafos série-paralelos, e para grafos com grau máximo 4. Além disso, nós mostramos que os únicos grafos nessas classes que não admitem uma decomposição \mathcal{D} tal que $|\mathcal{D}| \leq\lfloor n / 2\rfloor$ são isomorfos a K_{3}, K_{5} e $K_{5}-e$. A técnica desenvolvida aqui é também usada para apresentar uma nova prova de um resultado de Grainwille e Moisiadis (1987) que diz que grafos Eulerianos com grau máximo 4 satisfazem a Conjectura de Hajós.

[^0]
1. Introduction

A decomposition \mathcal{D} of a graph G is a set $\left\{H_{1}, \ldots, H_{k}\right\}$ of edge-disjoint subgraphs of G that cover the edge-set of G. We say that \mathcal{D} is a path (resp. cycle) decomposition if H_{i} is a path (resp. cycle) for $i=1, \ldots, k$. We say that a path (resp. cycle) decomposition \mathcal{D} of a graph (resp. an Eulerian graph) G is minimum if for any path (resp. cycle) decomposition \mathcal{D}^{\prime} of G we have $|\mathcal{D}| \leq\left|\mathcal{D}^{\prime}\right|$. The size of a minimum path (resp. cycle) decomposition is called the path (resp. cycle) number of G, and is denoted by $\operatorname{pn}(G)$ (resp. cn (G)). In this paper, we focus in the following conjectures concerning minimum path and cycles decompositions of graphs (see [Bondy 2014, Lovász 1968]).
Conjecture 1 (Gallai, 1966) If G is a connected graph with n vertices, then $\mathrm{pn} \leq\left\lfloor\frac{n+1}{2}\right\rfloor$.
Conjecture 2 (Hajós, 1968) If G is an Eulerian graph with n vertices, then $\mathrm{cn} \leq\left\lfloor\frac{n-1}{2}\right\rfloor$.
Although these conjectures are very similar, the results obtained towards their verification are distinct. In 1968, Lovász proved that a graph with n vertices can be decomposed into at most $\lfloor n / 2\rfloor$ paths and cycles. A consequence of this result is that if G is a graph with at most one vertex of even degree, then $\mathrm{pn}(G)=\lfloor n / 2\rfloor$. Pyber (1996) and Fan (2005) extended this result, but the conjecture is still open. In [Botler and Jiménez 2017], one of the authors verified Conjecture 1 for a family of even regular graphs, and Jiménez and Wakabayashi (2014) verified it for a family of triangle-free graphs.

In another direction, Geng, Fang and Li (2015) verified Conjecture 1 for maximal outerplanar graphs and 2-connected outerplanar graphs, and Favaron and Kouider (1988) verified it for Eulerian graphs with maximum degree 4 . While we were writing this paper, we learned that Bonamy and Perrett [Bonamy and Perrett 2016] verified Conjecture 1 for graphs with maximum degree 5 .

Conjecture 2, on the other hand, was only verified for graphs with maximum degree 4 [Granville and Moisiadis 1987] and for planar graphs [Seyffarth 1992].

In this paper, we present a technique that showed to be useful to deal with both Gallai's and Hajós' Conjectures. Our technique consists of finding, given a graph G, a special subgraph H, which we call a reducing subgraph of G, that have small path or cycle number compared to the number of vertices of G that are isolated in $G-E(H)$. In this paper we focus on series-parallel graphs and graphs with maximum degree 4 . We verify Gallai's and Hajós' Conjectures for these classes in Section 2 and 3, respectively. Due to space limitations, we present only the sketch of some proofs.

2. Reducing subgraphs and Gallai's Conjecture

Let G be a graph and let H be a subgraph of G. Given a positive integer r, we say that H is an r-reducing subgraph of G if $G-E(H)$ has at least $2 r$ isolated vertices and $\mathrm{pn}(H) \leq r$. The following lemma arises naturally.

Lemma 1 Let G be a graph and $H \subseteq G$ be an r-reducing subgraph of G. If $\operatorname{pn}(G-$ $E(H)) \leq\lfloor n / 2\rfloor-r$, then $\operatorname{pn}(G) \leq\lfloor n / 2\rfloor$.

In order to verify Conjecture 1 for graphs with maximum degree 4 , we first extend the results in [Geng et al. 2015] by proving that Gallai's Conjecture holds for seriesparallel graphs, which are precisely the graphs with no subdivision of K_{4}. The proof of the next theorem relies on the fact that series-parallel graphs with at least four vertices
contain at least two non-adjacent vertices of degree at most 2 . This fact is easy to verify, since series-parallel graphs are also the graphs with treewidth at most 2 .
Theorem 2 Let G be a connected graph on n vertices. If G has no subdivision of K_{4}, then $\mathrm{pn}(G) \leq\lfloor n / 2\rfloor$ or G is isomorphic to K_{3}.
Sketch of the proof. For a contradiction, let G be a minimum counter-example for the statement. It is not hard to verify that G has at least five vertices. Thus, let u, v be two non-adjacent vertices of degree at most 2 . We can show that u and v have at most one neighbor in common, which implies that there is a path P containing both u and v as internal vertices. Let H be the graph consisting of P together with the components of $G-E(P)$ that isomorphic to K_{3}. We can show that H is an r-reducing subgraph and that $\operatorname{pn}(G-E(H)) \leq\lfloor n / 2\rfloor-r$. Therefore, Lemma 1 concludes the proof.

The same technique verifies Conjecture 1 for planar graphs with girth at least 6 .
Theorem 3 If G is a planar graph on n vertices and girth at least 6 , then $\operatorname{pn}(G) \leq\lfloor n / 2\rfloor$.
The next theorem verifies Conjecture 1 for graphs with maximum degree 4.
Theorem 4 If G is a connected graph on n vertices and has maximum degree 4, then $\mathrm{pn}(G) \leq\lfloor n / 2\rfloor$ or G is isomorphic to K_{3}, K_{5} or to K_{5}^{-}.
Sketch of the proof. For a contradiction, let G be minimum counter-example for the statement. By Theorem 2, we may suppose that G contains a subdivision H of K_{4}. Let $v_{1}, v_{2}, v_{3}, v_{4}$ be the vertices of H with degree 3 , and let S be the set of edges incidents to v_{i} in $G-E(H)$, for $i=1,2,3,4$. The rest of the proof depends on the structure of the subgraph of G induced by S. We analyze one of the possible cases. Suppose that there are distinct vertices x, y in $V(G)$ such that $S \subseteq\left\{x v_{1}, x v_{2}, y v_{3}, y v_{4}\right\}$. It is not hard to check that $H+S$ can be decomposed into two paths, and $v_{1}, v_{2}, v_{3}, v_{4}$ are isolated vertices in $G-E(H)-S$. Now, let H^{\prime} be the graph consisting of $H+S$ together with the components of $G-E(H)-S$ that are isomorphic to K_{3}, K_{5}, or $K_{5}-e$. Again, we can show that H^{\prime} is an r-reducing subgraph and that $\mathrm{pn}(G-E(H)-S) \leq\lfloor n / 2\rfloor-r$. Lemma 1 concludes the proof.

3. Reducing subgraphs and Hajós' Conjecture

When dealing with Conjecture 2, the same strategy holds: we first verify Conjecture 2 for graphs with no subdivision of K_{4}, and then we show how to extend subdivisions of K_{4} in order to obtain a (cycle) reducing subgraph. Given a positive integer r, we say that an Eulerian subgraph H of an Eulerian graph G is an r-cycle reducing subgraph of G if $G-E(H)$ has at least $2 r$ isolated vertices and $\mathrm{cn}(H) \leq r$. Analogously to Section 2 we obtain the following Lemma.

Lemma 5 Let G be an Eulerian graph and $H \subset G$ be an r-cycle reducing subgraph of G. If $\mathrm{cn}(G-E(H)) \leq\lfloor(n-1) / 2\rfloor-r$, then $\mathrm{cn}(G) \leq\lfloor(n-1) / 2\rfloor$.

The next theorems are the main results of this section.
Theorem 6 If G is an Eulerian graph with n non-isolated vertices and with no subdivision of K_{4}, then $\operatorname{cn}(G) \leq\lfloor(n-1) / 2\rfloor$.

Sketch of the proof. For a contradiction, let G be minimum counter-example for the statement. Let u, v be vertices of degree at most 2 in G. It is not hard to prove that G
is 2 -connected, hence there is a cycle C in G containing u and v. The cycle C is a 1 cycle reducing subgraph of G, and by the minimality of G, we have $\mathrm{cn}(G-E(C)) \leq$ $\lfloor(n-1) / 2\rfloor-1$. Therefore, Lemma 5 concludes the proof.
Theorem 7 If G is an Eulerian graph with n vertices and maximum degree 4, then $\operatorname{cn}(G) \leq\lfloor(n-1) / 2\rfloor$.
Sketch of the proof. For a contradiction, let G be minimum counter-example for the statement. By Theorem 6, we may suppose that G contains a subdivision H of K_{4}. Thus, $G-E(H)$ contains four vertices, say $v_{1}, v_{2}, v_{3}, v_{4}$, with degree 1 . We can suppose, without loss of generality, that $G-E(H)$ contains paths P, Q joining v_{1} to v_{2} and v_{3} to v_{4}, respectively. We can prove that the subgraph $H^{\prime}=H+P+Q$ is an r-cycle reducing subgraph of G and that $\mathrm{cn}\left(G-E\left(H^{\prime}\right)\right) \leq\lfloor n / 2\rfloor-r$. Lemma 5 concludes the proof.

4. Concluding remarks

Reducing subgraphs have allowed us to obtain both new results and new proofs for known results. Also, this work provides literature with a technique that can be applied at the same time to both Gallai's and Hajós' Conjectures. In a forthcoming work we apply this technique to verify Conjectures 1 and 2 for partial 3-trees.

Referências

Bonamy, M. and Perrett, T. (2016). Gallai's path decomposition conjecture for graphs of small maximum degree. ArXiv e-prints.
Bondy, A. (2014). Beautiful conjectures in graph theory. European J. Combin., 37:4-23.
Botler, F. and Jiménez, A. (2017). On path decompositions of $2 k$-regular graphs. Discrete Mathematics, 340(6):1405-1411.
Fan, G. (2005). Path decompositions and Gallai's conjecture. J. Combin. Theory Ser. B, 93(2):117-125.

Favaron, O. and Kouider, M. (1988). Path partitions and cycle partitions of Eulerian graphs of maximum degree 4. Studia Sci. Math. Hungar., 23(1-2):237-244.
Geng, X., Fang, M., and Li, D. (2015). Gallai's conjecture for outerplanar graphs. Journal of Interdisciplinary Mathematics, 18(5):593-598.
Granville, A. and Moisiadis, A. (1987). On Hajós' conjecture (minimum cycle-partitions of the edge-set of Eulerian graphs). Congr. Numer., 56:183-187. Sixteenth Manitoba conference on numerical mathematics and computing (Winnipeg, Man., 1986).
Jiménez, A. and Wakabayashi, Y. (2014). On path-cycle decompositions of triangle-free graphs. ArXiv e-prints.
Lovász, L. (1968). On covering of graphs. In Theory of Graphs (Proc. Colloq., Tihany, 1966), pages 231-236. Academic Press, New York.

Pyber, L. (1996). Covering the edges of a connected graph by paths. J. Combin. Theory Ser. B, 66(1):152-159.

Seyffarth, K. (1992). Hajós' conjecture and small cycle double covers of planar graphs. Discrete Math., 101(1-3):291-306. Special volume to mark the centennial of Julius Petersen's "Die Theorie der regulären Graphs", Part II.

[^0]: *This research has been partially supported by CNPq Projects (Proc. 477203/2012-4 and 456792/20147), Fapesp Project (Proc. 2013/03447-6). F. Botler is partially supported by CAPES (Proc. 1617829), Millenium Nucleus Information and Coordination in Networks (ICM/FIC RC 130003), and FONDECYT (proyecto $N^{o} 3170878$). M. Sambinelli is suported by CNPq (Proc. 141216/2016-6). O. Lee is suported by CNPq (Proc. 311373/2015-1 and 477692/2012-5).

