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Abstract. An ordered pair (π, cπ) is said to be a gap-[k]-edge-labelling (gap-[k]-
vertex-labelling) if π is an edge-labelling (vertex-labelling) on the set {1, . . . , k},

and cπ is a proper vertex-colouring induced by a gap-function based on π. Gap-[k]-
edge-labellings and gap-[k]-vertex-labellings were first introduced by M. Tahraoui et

al. [7] and A. Dehghan et al. [2], respectively. The edge-gap number (vertex-gap

number) is the least k for which there exists a gap-[k]-edge-labelling (gap-[k]-vertex-

labelling) of a graph. In this work, we study the edge-gap number, χg
E

, and the vertex-

gap number, χg
V

, of cycles, crowns and wheels.

1. Introduction

Let G be a simple, finite and undirected graph with vertex set V (G) and edge set E(G). An

edge e ∈ E(G) with ends u, v ∈ V (G) is denoted by uv. The degree of a vertex v ∈ V (G) is

denoted by d(v) and the minimum degree of G, by δ(G). The set of edges incident with v is

denoted by E(v) and its neighbourhood, by N(v).

For a set C of colours, a (proper vertex-)colouring of G is a mapping c : V (G) → C,

such that c(u) 6= c(v) for every pair of adjacent vertices u, v ∈ V (G). If |C| = k, mapping c is

called a k-colouring. The chromatic number, χ(G), is the least number k for which G admits

a k-colouring. For S = E(G) or S = V (G) and a set of labels [k] = {1, . . . , k}, a labelling

π of G is a mapping π : S → [k]. For S ′ ⊆ S, the gap function, gap(π, S ′), is defined as:

1, if S ′ = ∅; π(s), if S ′ = {s}; or maxs∈S{π(s)} − mins∈S{π(s)}, if |S| ≥ 2. A gap-[k]-
edge-labelling of G is an ordered pair (π, cπ) such that π : E(G) → [k] is a labelling of G and

cπ : V (G) → C, a colouring of G defined as cπ(v) = gap(π, E(v)). The least k for which G

admits a gap-[k]-edge-labelling, χg
E
(G), is called edge-gap number. A gap-[k]-vertex-labelling

of G is defined similarly, with π : V (G) → [k], and cπ(v) = gap(π,N(v)). The least k for

which G admits a gap-[k]-vertex-labelling, χg
V
(G), is called vertex-gap number. An interesting

remark is that all K2-free graphs admit a gap-[k]-edge-labelling for some k, while there are

graphs for which there is no gap-[k]-vertex-labelling, for any k [7]. For instance, complete

graphs Kn, n ≥ 4, do not admit such a labelling.

Most researchers date the labelling of graphs using mathematical operations back to

1967, when it was introduced by A. Rosa [3, 4]. Since then, several variants of labellings have

been created and studied. Gap-[k]-edge-labellings, introduced in 2012 by M. Tahraoui et al. [7]

as a variant of gap-k-colourings, were investigated by R. Scheidweiler and E. Triesch [5, 6],

and A. Brandt et al. [1]. The latter proved that χ(G) ≤ χg
E
(G) ≤ χ(G)+1 for all graphs except

stars. They also determined the edge-gap number for complete graphs, cycles and trees. The

vertex variant was first introduced in 2013 by A. Dehghan et al. [2], who proved that deciding

whether a graph admits a gap-[k]-vertex-labelling is NP-complete for several classes of graphs.

These findings inspired us to further research the properties of these labellings. In this work,



we study the edge-gap and vertex-gap numbers for three classes of graphs: cycles, crowns and

wheels, and compare these parameters.

2. Results

We start by considering cycle graphs Cn, which are 2-regular, connected, simple graphs. Let

V (Cn) = {v0, . . . , vn−1} and E(Cn) = {vivi+1}, 0 ≤ i < n. For C3, χ
g
V
(C3) = χg

E
(C3) = 4.

For n ≥ 4, the vertex-gap number is established in the next theorem.

Theorem 1. Let G ∼= Cn, n ≥ 4. Then, χg
V
(G) = 2, if n ≡ 0 (mod 4), and χg

V
(G) = 3,

otherwise.

Outline of the proof. Let G = Cn, n ≥ 4. Since δ(G) ≥ 2, χg
V
(G) ≥ χ(G). It is well-

known that χ(G) = 2 if n is even, and χ(G) = 3, otherwise. By induction on n, we show

that χg
V
(G) ≤ 3.

We prove that G admits a gap-[3]-vertex-labelling (π, cπ) with labels (π(vn−2), π(vn−1),
π(v0)) and colours (cπ(vn−2), cπ(vn−1), cπ(v0)) satisfying one of the following conditions: (i)

(1, 2, 1) and (1, 0 , 1); (ii) (2, 3, 2) and (2, 0, 2); (iii) (3, 1, 3) and (1, 0, 1); or (iv) (1, 1, 1) and

(2, 0, 2).

For C4 and C5, assign labels (1, 3, 1, 2) and (1, 3, 1, 1, 2) to vertices (v0, . . . , vn−1), re-

spectively, satisfying condition (i). Now, let (π, cπ) be a gap-[3]-vertex-labelling for Cn, n ≥ 4,

satisfying one of the above conditions. We create cycle Cn+2 by replacing vertex vn−1 with

a P3, and labelling the new vertices so that if Cn satisfies condition l, l ∈ {(i), (ii), (iii), (iv)},

then Cn+2 satisfies the next condition in the cyclic order ((i), (ii), (iii), (iv)). We remark that all

operations on the indices are taken modulo n. Figure 1 exemplifies this construction.
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Figure 1. Cycle Cn satisfies condition (iii). We assign labels to the vertices of Cn+2 so

as to satisfy condition (iv)

Now, we prove that only Cn, n ≡ 0 (mod 4) admits a gap-[2]-vertex-labelling. Let

(π, cπ) be a gap-[2]-vertex-labelling of Cn. Adjust notation so that cπ(vi) = 0, if i ≡ 0
(mod 2), and cπ(vi) = 1, otherwise. This implies that every vertex vi with odd index has

the same label a, for a ∈ {1, 2}, and also {π(vi−1), π(vi+1)} = {1, 2}. Let j ≡ 1 (mod 2).
Each sequence of four vertices (vj−1, vj, vj+1, vj+2) has labels (a, a, b, a) or (b, a, a, a), for

{a, b} = {1, 2}. Moreover, the distance between any two consecutive vertices u, v ∈ V (Cn)
with label b is exactly four. Without loss of generality, consider the sequence (a, a, b, a) start-

ing at v0 and repeating itself along the cycle. If n ≡ 2 (mod 4), then cπ(vn−1) = cπ(v0) = 0
and, therefore, cπ is not a colouring of G. Thus, there is no gap-[2]-vertex-labelling of G in this

case. For n ≡ 0 (mod 4), any assignment of values {a, b} = {1, 2} using one of the sequences

(a, a, b, a) or (b, a, a, a) produces a gap-[2]-vertex-labelling for Cn, and the result follows.

In 2016, A. Brandt et al. [1] showed that χg
E
(Cn) = 2 if n ≡ 0 (mod 4), and χg

E
(Cn) =

3, otherwise. Their proof is shorter, although with some common points. As we have been
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observing, gap-[k]-edge-labellings allow an analysis in a more restricted neighbourhood, which

helps to limit the number of cases under consideration.

Next, we study crown graphs. A crown Rn, n ≥ 3, is the graph obtained from Cn

and n copies of K2, by identifying each vertex of Cn with one vertex of a different copy of a

K2. Figure 2 illustrates the crown R8. The values of χg
E
(Rn) and χg

V
(Rn) are established in

Theorem 2.

Figure 2. The crown R8

Theorem 2. Let G ∼= Rn, n ≥ 3. Then, χg
E
(G) = χg

V
(G) = χ(Cn).

Proof. Let G = Rn, with V (G) = {v0, . . . , vn−1} ∪ {u0, . . . , un−1}, d(vi) = 3 and d(ui) = 1,

0 ≤ i < n. First, we show that χg
E
(G) ≥ χ(Cn). Note that χg

E
(G) ≥ 2 since G has adjacent

vertices of same degree. However, if n is odd, χg
E
(G) ≥ 3 since it is not possible to have

colour 2 in a vertex of degree three in any gap-[2]-edge-labelling of G.

Let π(vivi+1) = 1, 0 ≤ i < n, and π(viui) = 1+(i mod 2), 0 ≤ i < n− (n mod 2). If

n is odd, let π(vn−1un−1) = 3. Observe that cπ(ui) = π(viui) for all ui, cπ(vi) = i mod 2, for

i ∈ [0, n− (n mod 2)], and cπ(vn−1) = 2, when n is odd. Therefore, (π, cπ) is a gap-[χ(Cn)]-
edge-labelling, and we conclude that χg

E
(G) = χ(Cn).

Now, we prove that χg
V
(G) = χ(Cn). As in the previous case, χg

V
(G) ≥ χ(Cn). In

order to conclude the proof, it is sufficient to construct a gap-[χ(Cn)]-vertex-labelling for G.

Let π(vi) = χ(Rn), 0 ≤ i < n, and π(ui) = 1 + (i mod 2), 0 ≤ i < n − (n mod 2). If n is

odd, let π(un−1) = 3. The result follows from the fact that cπ(ui) = π(vi) = χ(Rn) for all ui,

cπ(vi) = χ(Rn)− 1− (i mod 2), and cπ(vn−1) = 0, when n is odd.

The last class considered is the wheel graphs. A wheel Wn, n ≥ 3 is the graph obtained

from Rn by identifying all degree-one vertices. In the next theorem we determine χg
E
(Wn).

Theorem 3. Let G ∼= Wn, n ≥ 3. Then, χg
E
(G) = 3, if n is even and n 6= 4, and χg

E
(G) = 4,

otherwise.

Proof. Let G = Wn, n ≥ 3. Since δ(G) ≥ 2, χg
E
(G) ≥ χ(G) = χ(Cn) + 1. Consider, first,

the case where n is even. Assign label 2 to edges vivi+1, 0 ≤ i < n. Following the order of

the indices, assign labels 2, 1, alternately, to edges vivn, 0 ≤ i < n − 1. Assign label 3 to

the remaining edge vn−1vn. Observe that cπ(vi) = i mod 2, 0 ≤ i < n, and cπ(vn) = 2. We

conclude that (π, cπ) is a gap-[3]-edge-labelling of G.

Now take n = 3. Since G ∼= K4, χ
g
E
(G) = χg

E
(K4) = 4, as shown by A. Brandt et

al. [1]. Finally, suppose n ≥ 5 and odd. Assign labels 2, 3, alternately, to the edges vivi+1,

1 ≤ i ≤ n − 3; labels 1, 2 to the edges vivn, 0 ≤ i ≤ n − 3; and labels 3, 1, 1, 4, 1 to

the edges vn−2vn−1, vn−1v0, v0v1, vn−2vn, vn−1vn, respectively. In order to see that (π, cπ) is

a gap-[4]-edge-labelling, note that cπ(vi) = 2 − (i mod 2), 1 ≤ i ≤ n − 1, cπ(v0) = 0 and

cπ(vn) = 3. This concludes the proof.
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Finally, consider the gap-[k]-vertex-labelling of wheels. As previously stated, the graph

W3
∼= K4 does not admit a gap-[k]-vertex-labelling for any k. It remains to consider χg

V
(Wn)

for n ≥ 4, which is established in the next theorem.

Theorem 4. Let G ∼= Wn, n ≥ 4. Then, χg
V
(G) = 3, if n is even and n ≥ 8, and χg

V
(G) = 4,

otherwise.

Proof. Let G = Wn, n ≥ 4, with V (Wn) = {v0, . . . , vn} and d(vn) = n− 1. Since δ(G) ≥ 2,

χg
V
(G) ≥ χ(G) = χ(Cn) + 1. For n = 4, assign labels 4, 1, 4, 1, 3 to vertices v0, . . . , v4,

respectively, obtaining a gap-[4]-vertex-labelling of W4. Now, for n ≥ 5, assign label 2 to

vertices v0, v1, v2 and vn. Assign labels 4, 1, alternately, to the remaining vertices vi, 3 ≤ i < n.

Note that cπ(vi) = 2 − (i mod 2), 2 ≤ i < n, cπ(v0) = 2 − (n mod 2), cπ(v1) = 0, and

cπ(vn) = 3. This is a gap-[4]-vertex-labelling of G, and the result follows.

Now, consider the case n ≥ 8, n ≡ 0 (mod 2). Assign labels 2, 1, alternately, to

vertices vi, 0 ≤ i ≤ n − 6. Assign label 3 to vertex vn−3. Assign label 2 to the remaining

vertices vn−5, vn−4, vn−2, vn−1, vn. Note that cπ(vi) = 1 + (i mod 2), 0 ≤ i < n, and

cπ(vn) = 2. Therefore, (π, cπ) is a gap-[3]-vertex-labelling of G.

In order to complete the proof, it remains to consider the cases of n = 4 and n =
6. Since these are small cases, one can see, by inspection, that there are no gap-[3]-vertex-

labellings of W4 or W6 by considering the possible colours of vn.

3. Concluding remarks

In this work, we studied χg
E
(G) and χg

V
(G) for cycles, crowns and wheels and observed that

the edge-labelling variant is less restrictive than the vertex one. This occurs because a labelled

edge only affects the colours of its endpoints, whereas a labelled vertex affects its entire neigh-

bourhood. Moreover, for the classes considered in this work, it is possible to assign different

labels to a certain edge, maintaining the resulting vertex colouring, whereas such a property is

not true for gap-[k]-vertex-labellings.
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