Tight bounds for gap-labellings

C. A. Weffort-Santos¹, C. N. Campos¹, R. C. S. Schouery¹

¹Institute of Computing - University of Campinas (UNICAMP) Av. Albert Einstein, 1251 – 13083-852 – Campinas – SP – Brazil

celso.santos@students.ic.unicamp.br, {campos, rafael}@ic.unicamp.br

Abstract. An ordered pair (π, c_{π}) is said to be a gap-[k]-edge-labelling (gap-[k]-vertex-labelling) if π is an edge-labelling (vertex-labelling) on the set $\{1, \ldots, k\}$, and c_{π} is a proper vertex-colouring induced by a gap-function based on π . Gap-[k]-edge-labellings and gap-[k]-vertex-labellings were first introduced by M. Tahraoui et al. [7] and A. Dehghan et al. [2], respectively. The edge-gap number (vertex-gap number) is the least k for which there exists a gap-[k]-edge-labelling (gap-[k]-vertex-labelling) of a graph. In this work, we study the edge-gap number, χ_{E}^{g} , and the vertex-gap number, χ_{V}^{g} , of cycles, crowns and wheels.

1. Introduction

Let G be a simple, finite and undirected graph with vertex set V(G) and edge set E(G). An edge $e \in E(G)$ with ends $u, v \in V(G)$ is denoted by uv. The degree of a vertex $v \in V(G)$ is denoted by d(v) and the minimum degree of G, by $\delta(G)$. The set of edges incident with v is denoted by E(v) and its neighbourhood, by N(v).

For a set C of *colours*, a (proper vertex-)colouring of G is a mapping $c : V(G) \to C$, such that $c(u) \neq c(v)$ for every pair of adjacent vertices $u, v \in V(G)$. If |C| = k, mapping c is called a k-colouring. The chromatic number, $\chi(G)$, is the least number k for which G admits a k-colouring. For S = E(G) or S = V(G) and a set of labels $[k] = \{1, \ldots, k\}$, a labelling π of G is a mapping $\pi : S \to [k]$. For $S' \subseteq S$, the gap function, $gap(\pi, S')$, is defined as: 1, if $S' = \emptyset$; $\pi(s)$, if $S' = \{s\}$; or $\max_{s \in S} \{\pi(s)\} - \min_{s \in S} \{\pi(s)\}$, if $|S| \ge 2$. A gap-[k]edge-labelling of G is an ordered pair (π, c_{π}) such that $\pi : E(G) \to [k]$ is a labelling of G and $c_{\pi} : V(G) \to C$, a colouring of G defined as $c_{\pi}(v) = gap(\pi, E(v))$. The least k for which Gadmits a gap-[k]-edge-labelling, $\chi^g_E(G)$, is called edge-gap number. A gap-[k]-vertex-labelling of G is defined similarly, with $\pi : V(G) \to [k]$, and $c_{\pi}(v) = gap(\pi, N(v))$. The least k for which G admits a gap-[k]-vertex-labelling, $\chi^g_V(G)$, is called vertex-gap number. An interesting remark is that all K_2 -free graphs admit a gap-[k]-edge-labelling for some k, while there are graphs for which there is no gap-[k]-vertex-labelling, for any k [7]. For instance, complete graphs $K_n, n \ge 4$, do not admit such a labelling.

Most researchers date the labelling of graphs using mathematical operations back to 1967, when it was introduced by A. Rosa [3, 4]. Since then, several variants of labellings have been created and studied. Gap-[k]-edge-labellings, introduced in 2012 by M. Tahraoui et al. [7] as a variant of gap-k-colourings, were investigated by R. Scheidweiler and E. Triesch [5, 6], and A. Brandt et al. [1]. The latter proved that $\chi(G) \leq \chi_E^g(G) \leq \chi(G) + 1$ for all graphs except stars. They also determined the edge-gap number for complete graphs, cycles and trees. The vertex variant was first introduced in 2013 by A. Dehghan et al. [2], who proved that deciding whether a graph admits a gap-[k]-vertex-labelling is NP-complete for several classes of graphs. These findings inspired us to further research the properties of these labellings. In this work,

we study the edge-gap and vertex-gap numbers for three classes of graphs: cycles, crowns and wheels, and compare these parameters.

2. Results

We start by considering cycle graphs C_n , which are 2-regular, connected, simple graphs. Let $V(C_n) = \{v_0, \ldots, v_{n-1}\}$ and $E(C_n) = \{v_i v_{i+1}\}, 0 \le i < n$. For $C_3, \chi_V^g(C_3) = \chi_E^g(C_3) = 4$. For $n \ge 4$, the vertex-gap number is established in the next theorem.

Theorem 1. Let $G \cong C_n$, $n \ge 4$. Then, $\chi_V^g(G) = 2$, if $n \equiv 0 \pmod{4}$, and $\chi_V^g(G) = 3$, otherwise.

Outline of the proof. Let $G = C_n$, $n \ge 4$. Since $\delta(G) \ge 2$, $\chi_V^g(G) \ge \chi(G)$. It is wellknown that $\chi(G) = 2$ if n is even, and $\chi(G) = 3$, otherwise. By induction on n, we show that $\chi_V^g(G) \le 3$.

We prove that G admits a gap-[3]-vertex-labelling (π, c_{π}) with labels $(\pi(v_{n-2}), \pi(v_{n-1}), \pi(v_0))$ and colours $(c_{\pi}(v_{n-2}), c_{\pi}(v_{n-1}), c_{\pi}(v_0))$ satisfying one of the following conditions: (i) (1, 2, 1) and (1, 0, 1); (ii) (2, 3, 2) and (2, 0, 2); (iii) (3, 1, 3) and (1, 0, 1); or (iv) (1, 1, 1) and (2, 0, 2).

For C_4 and C_5 , assign labels (1, 3, 1, 2) and (1, 3, 1, 1, 2) to vertices (v_0, \ldots, v_{n-1}) , respectively, satisfying condition (i). Now, let (π, c_{π}) be a gap-[3]-vertex-labelling for $C_n, n \ge 4$, satisfying one of the above conditions. We create cycle C_{n+2} by replacing vertex v_{n-1} with a P_3 , and labelling the new vertices so that if C_n satisfies condition $l, l \in \{(i), (ii), (iii), (iv)\}$, then C_{n+2} satisfies the next condition in the cyclic order ((i), (ii), (iii)). We remark that all operations on the indices are taken modulo n. Figure 1 exemplifies this construction.

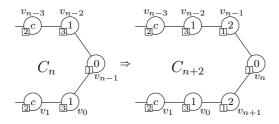


Figure 1. Cycle C_n satisfies condition (iii). We assign labels to the vertices of C_{n+2} so as to satisfy condition (iv)

Now, we prove that only C_n , $n \equiv 0 \pmod{4}$ admits a gap-[2]-vertex-labelling. Let (π, c_{π}) be a gap-[2]-vertex-labelling of C_n . Adjust notation so that $c_{\pi}(v_i) = 0$, if $i \equiv 0 \pmod{2}$, and $c_{\pi}(v_i) = 1$, otherwise. This implies that every vertex v_i with odd index has the same label a, for $a \in \{1, 2\}$, and also $\{\pi(v_{i-1}), \pi(v_{i+1})\} = \{1, 2\}$. Let $j \equiv 1 \pmod{2}$. Each sequence of four vertices $(v_{j-1}, v_j, v_{j+1}, v_{j+2})$ has labels (a, a, b, a) or (b, a, a, a), for $\{a, b\} = \{1, 2\}$. Moreover, the distance between any two consecutive vertices $u, v \in V(C_n)$ with label b is exactly four. Without loss of generality, consider the sequence (a, a, b, a) starting at v_0 and repeating itself along the cycle. If $n \equiv 2 \pmod{4}$, then $c_{\pi}(v_{n-1}) = c_{\pi}(v_0) = 0$ and, therefore, c_{π} is not a colouring of G. Thus, there is no gap-[2]-vertex-labelling of G in this case. For $n \equiv 0 \pmod{4}$, any assignment of values $\{a, b\} = \{1, 2\}$ using one of the sequences (a, a, b, a) or (b, a, a, a) produces a gap-[2]-vertex-labelling for C_n , and the result follows. \Box

In 2016, A. Brandt et al. [1] showed that $\chi_E^g(C_n) = 2$ if $n \equiv 0 \pmod{4}$, and $\chi_E^g(C_n) = 3$, otherwise. Their proof is shorter, although with some common points. As we have been

observing, gap-[k]-edge-labellings allow an analysis in a more restricted neighbourhood, which helps to limit the number of cases under consideration.

Next, we study crown graphs. A crown R_n , $n \ge 3$, is the graph obtained from C_n and n copies of K_2 , by identifying each vertex of C_n with one vertex of a different copy of a K_2 . Figure 2 illustrates the crown R_8 . The values of $\chi^g_E(R_n)$ and $\chi^g_V(R_n)$ are established in Theorem 2.

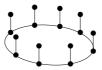


Figure 2. The crown R_8

Theorem 2. Let $G \cong R_n$, $n \ge 3$. Then, $\chi^g_E(G) = \chi^g_V(G) = \chi(C_n)$.

Proof. Let $G = R_n$, with $V(G) = \{v_0, \ldots, v_{n-1}\} \cup \{u_0, \ldots, u_{n-1}\}, d(v_i) = 3$ and $d(u_i) = 1$, $0 \le i < n$. First, we show that $\chi^g_E(G) \ge \chi(C_n)$. Note that $\chi^g_E(G) \ge 2$ since G has adjacent vertices of same degree. However, if n is odd, $\chi^g_E(G) \ge 3$ since it is not possible to have colour 2 in a vertex of degree three in any gap-[2]-edge-labelling of G.

Let $\pi(v_i v_{i+1}) = 1, 0 \le i < n$, and $\pi(v_i u_i) = 1 + (i \mod 2), 0 \le i < n - (n \mod 2)$. If n is odd, let $\pi(v_{n-1}u_{n-1}) = 3$. Observe that $c_{\pi}(u_i) = \pi(v_i u_i)$ for all $u_i, c_{\pi}(v_i) = i \mod 2$, for $i \in [0, n - (n \mod 2)]$, and $c_{\pi}(v_{n-1}) = 2$, when n is odd. Therefore, (π, c_{π}) is a gap- $[\chi(C_n)]$ -edge-labelling, and we conclude that $\chi_E^g(G) = \chi(C_n)$.

Now, we prove that $\chi_V^g(G) = \chi(C_n)$. As in the previous case, $\chi_V^g(G) \ge \chi(C_n)$. In order to conclude the proof, it is sufficient to construct a gap- $[\chi(C_n)]$ -vertex-labelling for G. Let $\pi(v_i) = \chi(R_n), 0 \le i < n$, and $\pi(u_i) = 1 + (i \mod 2), 0 \le i < n - (n \mod 2)$. If n is odd, let $\pi(u_{n-1}) = 3$. The result follows from the fact that $c_{\pi}(u_i) = \pi(v_i) = \chi(R_n)$ for all u_i , $c_{\pi}(v_i) = \chi(R_n) - 1 - (i \mod 2)$, and $c_{\pi}(v_{n-1}) = 0$, when n is odd.

The last class considered is the wheel graphs. A wheel W_n , $n \ge 3$ is the graph obtained from R_n by identifying all degree-one vertices. In the next theorem we determine $\chi_{F}^{g}(W_n)$.

Theorem 3. Let $G \cong W_n$, $n \ge 3$. Then, $\chi_E^g(G) = 3$, if n is even and $n \ne 4$, and $\chi_E^g(G) = 4$, otherwise.

Proof. Let $G = W_n$, $n \ge 3$. Since $\delta(G) \ge 2$, $\chi_E^g(G) \ge \chi(G) = \chi(C_n) + 1$. Consider, first, the case where n is even. Assign label 2 to edges $v_i v_{i+1}$, $0 \le i < n$. Following the order of the indices, assign labels 2, 1, alternately, to edges $v_i v_n$, $0 \le i < n - 1$. Assign label 3 to the remaining edge $v_{n-1}v_n$. Observe that $c_{\pi}(v_i) = i \mod 2$, $0 \le i < n$, and $c_{\pi}(v_n) = 2$. We conclude that (π, c_{π}) is a gap-[3]-edge-labelling of G.

Now take n = 3. Since $G \cong K_4$, $\chi_E^g(G) = \chi_E^g(K_4) = 4$, as shown by A. Brandt et al. [1]. Finally, suppose $n \ge 5$ and odd. Assign labels 2, 3, alternately, to the edges $v_i v_{i+1}$, $1 \le i \le n-3$; labels 1, 2 to the edges $v_i v_n$, $0 \le i \le n-3$; and labels 3, 1, 1, 4, 1 to the edges $v_{n-2}v_{n-1}$, $v_{n-1}v_0$, v_0v_1 , $v_{n-2}v_n$, $v_{n-1}v_n$, respectively. In order to see that (π, c_π) is a gap-[4]-edge-labelling, note that $c_{\pi}(v_i) = 2 - (i \mod 2)$, $1 \le i \le n-1$, $c_{\pi}(v_0) = 0$ and $c_{\pi}(v_n) = 3$. This concludes the proof.

Finally, consider the gap-[k]-vertex-labelling of wheels. As previously stated, the graph $W_3 \cong K_4$ does not admit a gap-[k]-vertex-labelling for any k. It remains to consider $\chi_V^g(W_n)$ for $n \ge 4$, which is established in the next theorem.

Theorem 4. Let $G \cong W_n$, $n \ge 4$. Then, $\chi_V^g(G) = 3$, if n is even and $n \ge 8$, and $\chi_V^g(G) = 4$, otherwise.

Proof. Let $G = W_n$, $n \ge 4$, with $V(W_n) = \{v_0, \ldots, v_n\}$ and $d(v_n) = n - 1$. Since $\delta(G) \ge 2$, $\chi_V^g(G) \ge \chi(G) = \chi(C_n) + 1$. For n = 4, assign labels 4, 1, 4, 1, 3 to vertices v_0, \ldots, v_4 , respectively, obtaining a gap-[4]-vertex-labelling of W_4 . Now, for $n \ge 5$, assign label 2 to vertices v_0, v_1, v_2 and v_n . Assign labels 4, 1, alternately, to the remaining vertices $v_i, 3 \le i < n$. Note that $c_\pi(v_i) = 2 - (i \mod 2), 2 \le i < n, c_\pi(v_0) = 2 - (n \mod 2), c_\pi(v_1) = 0$, and $c_\pi(v_n) = 3$. This is a gap-[4]-vertex-labelling of G, and the result follows.

Now, consider the case $n \ge 8$, $n \equiv 0 \pmod{2}$. Assign labels 2, 1, alternately, to vertices v_i , $0 \le i \le n - 6$. Assign label 3 to vertex v_{n-3} . Assign label 2 to the remaining vertices v_{n-5} , v_{n-4} , v_{n-2} , v_{n-1} , v_n . Note that $c_{\pi}(v_i) = 1 + (i \mod 2)$, $0 \le i < n$, and $c_{\pi}(v_n) = 2$. Therefore, (π, c_{π}) is a gap-[3]-vertex-labelling of G.

In order to complete the proof, it remains to consider the cases of n = 4 and n = 6. Since these are small cases, one can see, by inspection, that there are no gap-[3]-vertex-labellings of W_4 or W_6 by considering the possible colours of v_n .

3. Concluding remarks

In this work, we studied $\chi_E^g(G)$ and $\chi_V^g(G)$ for cycles, crowns and wheels and observed that the edge-labelling variant is less restrictive than the vertex one. This occurs because a labelled edge only affects the colours of its endpoints, whereas a labelled vertex affects its entire neighbourhood. Moreover, for the classes considered in this work, it is possible to assign different labels to a certain edge, maintaining the resulting vertex colouring, whereas such a property is not true for gap-[k]-vertex-labellings.

Acknowledgements

Partially supported by grant #2015/11937-9, São Paulo Research Foundation (FAPESP).

References

- [1] A. Brandt, B. Moran, K. Nepal, F. Pfender, D. Sigler, *Local gap coloring from edge labelings*, Australasian Journal of Combinatorics **65(3)** (2016), 200-211.
- [2] A. Dehghan, M.-R. Sadeghi and A. Ahad, Algorithmic complexity of proper labeling problems, Theoretical Computer Science 495 (2013), 25 - 36.
- [3] J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics #DS6 (2016)
- [4] A. Rosa, *On certain valuations of the vertices of a graph*, Theory of Graphs (International Symposium) (1967), 394-355.
- [5] R. Scheidweiler, E. Triesch, *New estimates for the gap chromatic number*, SIAM Journal of Discrete Mathematics 328 (2014), 42-53.
- [6] R. Scheidweiler, E. Triesch, Gap-neighbour-distinguishing colourings, Journal of Combinatorial Mathematics and Combinatorial Computing, **94** (2015), 205-214.
- [7] M. A. Tahraoui, E. Duchene, H. Kheddouci, Gap vertex-distinguishing edge colourings of graphs, Discrete Mathematics 312 (20) (2012), 3011 - 3025.