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Abstract. In this paper we study the problem of coloring the edges of a graph

for any k-list assignment such that there is no maximal monochromatic biclique,

in other words, the k-biclique edge-choosability problem. We prove that the K3-

free graphs that are not odd cycles are 2-star edge-choosable, chordal bipartite

graphs are 2-biclique edge-choosable and we present a lower bound for the

biclique choice index of power of cycles and power of paths. We also provide

polynomial algorithms to compute a 2-biclique (star) edge-coloring for K3-free

and chordal bipartite graphs for any given 2-list assignment to edges.

1. Introduction

There are many problems related to coloring graphs. In this work we define an edge-

coloring problem called the the k-biclique edge-choosability problem. We call a biclique

an induced complete bipartite subgraph and if a maximal biclique is colored only with

one color then we say it’s a maximal monochromatic biclique.

The first related problem was studied by Pablo Terlisky in his master thesis in

2010 [Terlisky 2010]. He defined the k-biclique coloring analogously to the k-clique

coloring problem, studied by Dániel Marx [Marx 2011], as coloring the vertices of a

graph with k colors such that there is no maximal monochromatic biclique. A biclique

can be defined as a induced maximal complete bipartite subgraph. Terlisky proved that

the k-biclique coloring problem is ΣP
2

-complete in general case for k ≥ 2. Furthermore

Hélio B. Macedo Filho et al. [Figueiredo et al. 2013] showed that to verify if a power of

a cycle or a power of a path is biclique colorable is coNP-complete.

Also, the k-biclique coloring problem was studied in the context of list coloring

by Marina Groshaus et al. in 2012 [Soulignac et al. 2012]. They showed that k-biclique

choosability and k-star choosability are ΠP
3

-complete for k > 2 in general case. A power

of a path P k
n is graph with n vertices which {vi, vj} ∈ E(P k

n ) if and only if |i − j| ≤ k.

And a power of a cycle Ck
n is a graph with n vertices which {vi, vj} ∈ E(Ck

n) if and only

if min{(j − i) mod n, (i− j) mod n} ≤ k. Note that a P k
n is a subgraph of Ck

n.

When focus on coloring edges of the graph, the natural k-biclique edge-coloring

problem arises. It was defined by Dantas et al. as coloring the edges of a graph with k

colors such that there is no maximal monochromatic biclique [Guedes et al. 2017]. They

proved that the 2-biclique edge-coloring problem is NP-Hard in the general case, K3-free
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graphs that are not odd cycles are 2-star edge-colorable, chordal bipartite are 2-biclique

edge-colorable and power of paths and power of cycles are biclique edge-colorable using

at most 4 colors. A graph is chordal bipartite if there is a perfect edge without vertex

elimination ordering, which each removed edge induces a biclique.

A natural question that arises is what happens when Dantas et al. results are

considered in the context of list coloring. Given a graph G and a list color assignment L

to its edges, G is L-biclique edge-colorable if each edge of G can be colored using one

color from its list such that the (non trivial) bicliques of G are not monochromatic. The

k-biclique edge-choosability problem is to decide if a given graph G is L-biclique edge-

colorable for every list color assignment L with k colors to each edge. The biclique choice

index of a graph G (ch′
B(G)) is the minimum k such that G is k-biclique edge-choosable.

As the star is specific case of biclique then the k-star edge-choosability problem can

be defined analogously just replacing biclique by star. Since a graph choice index is at

least equals to its chromatic index [Rubin et al. 1979], then it is important to check the

relationship of graph biclique chromatic index and its biclique choice index. Therefore

the objective of this paper is to extend Dantas et al. results to list coloring context by

studying the k-biclique edge-choosability problem.

We prove that the K3-free graphs that are not odd cycles are 2-star edge-choosable,

chordal bipartite are 2-biclique edge-choosable and present a lower bound for the biclique

choice index of power of cycles and power of paths.

2. Star edge-choosability problem in K3-free graphs

In this section we are going to show that K3-free graphs not isomorphic to odd cycles,

are 2-star edge-choosable and provide a polynomial time algorithm to compute a 2-star

edge-coloring. The odd cycles are forbidden since in this case a proper edge coloring is

equivalent to color the edges of the graph such that there is no maximal monochromatic

star (K1,r). However odd cycles are not 2-edge-colorable then they are not 2-star edge-

choosable.

Theorem 1. The K3-free graphs not isomorphic to odd cycles, are 2-star edge-choosable.

Proof. Let G be a connected (otherwise use each connected component) K3-free graph

not isomorphic to any odd cycle. If G is an even cycle then coloring its edges is equivalent

to color the stars of G. As even cycles are 2-choosable [Rubin et al. 1979] then G is 2-

star edge-choosable. Otherwise, G is not an even cycle, then we show that G is 2-star

edge-choosable by giving an algorithm for coloring the edges of the graph.

If there is a vertex v with degree 1, consider a depth first search (DFS) of G started

at v. In that way there are no return edges to the root v. If there is no vertex of degree 1,

then there is a cycle C = (v1, . . . , vℓ). Assuming G is not a cycle, there is a vertex of C

that has a neighbor, w, outside the C. Suppose w.l.o.g. that vℓ is that vertex. Consider a

DFS started at v1 such that v2, . . . , vℓ appear in that sequence and before w. In that case,

there is at least a returning edge {vℓ, v1} (the root) and vℓ is not a leaf of the DFS.

We color the tree edges with a color different from the edge that is above in the

tree, since the list has size 2 this assignment is always possible. After that, the stars

centered at vertex that are not the root or a leaf of the DFS are already not monochromatic.



If the root has degree 1, its star is trivial. Otherwise, if the star centered at the root is still

monochromatic, color the return edge {vℓ, v1} with a different color. For the stars centered

at leaves of the DFS with return edges, choose one of its return edges and color with a

different color. Every non trivial star is not monochromatic. The remaining return edges

are colored with any color since all the stars are already colored with at least two colors.

We assure that every maximal star has two colors and then G is 2-star edge-choosable.

Since it is a DFS, the algorithm runs in polynomial time.

3. Biclique edge-choosability in chordal bipartite graphs

In this section we prove that every chordal bipartite graph is 2-biclique edge-choosable

and we also give a polynomial time algorithm to compute a 2-biclique edge-coloring.

Theorem 2. Every chordal bipartite graph is 2-biclique edge-choosable.

Proof. We are going to show that every chordal bipartite graph G is 2-biclique edge-

choosable by assigning inductively a color to an edge ei using its perfect edge-without-

vertex elimination ordering (e1, . . . , em) [Kratsch and Kloks 1995]. The base case is

when |E(G)| = 2 and in this case it is always possible to set a different color to each

of the edges. By inductive hypothesis we have that Gi−1 \ei is 2-biclique edge-choosable.

As ei is bisimplicial then ei belongs only to one biclique, so it is enough to set a color to

ei different from the edges of the biclique which contains ei, if it is still monochromatic.

And since the order (e1, . . . , em) traverses all bicliques of G, then when a color is set to

e1 there is no monochromatic biclique for any 2-list assignment and thus G is 2-biclique

edge-choosable.

As the naive method to find a bisimplicial edge (the vertices of an edge induces a

complete bipartite graph) takes O(|E|2) steps then the algorithm to compute a 2-biclique

edge-coloring is O(|E|3).

4. Biclique edge-choosability in power of paths and power of cycles

In this section we are going to present a lower bound for the biclique choice index of

power of cycles and power of paths, that is, the ch′
B(C

k
n) is the maximum between 2 and

a natural α > 0. We remark that the power of paths are sub-graphs of power of cycles

when we remove the edges from the last k vertices to the first k vertices of the graph.

Theorem 3. The biclique choice index ch′
B(C

k
n) > max{2, α}, if k ≥ 2, n > 4k and

⌈

k
2

⌉

≥
(

2α−1

α

)

.

Proof. Let H be the a graph defined by V (H) = {vij | {vi, vj} ∈ E(Ck
n)} and E(H) =

{{vij, vjl}|{vi, vl} 6∈ E(Ck
n)}, that is, vi, vj and vl induce a P3 of Ck

n. We are going to

show that ch′
B(C

k
n) > max{2, α}, if k ≥ 2, n > 4k and

⌈

k
2

⌉

≥
(

2α−1

α

)

, by proving

that if H is not α-choosable then Ck
n is not α-biclique edge-choosable, and that H is not

α-choosable.

As n > 4k then Ck
n maximal bicliques are P3 and an edge of H is equivalent to a

biclique of Ck
n. A vertex coloring of H is an edge coloring of Ck

n such that the bicliques



are not monochromatic. Note that by definition of H the degree of any vertex vij ∈ H

is dG(vi,j) = 2(min{(j − i) mod n, (i− j) mod n}) and δ(H) = 2 and ∆(H) = 2k.

Since H is not a K1, nor an even cycle, nor a θ2,2,2c, for an integer c, then H is not

2-choosable [Rubin et al. 1979] and thus ch′
B(C

k
n) > 2.

Also note that the resulting graph H has a K⌈ k

2
⌉,⌈ k

2
⌉ as an induced subgraph. Since

a complete bipartite graph Km,m is not α-choosable for m ≥
(

2α−1

α

)

[Rubin et al. 1979]

then H is not α-choosable for ⌈k
2
⌉ ≥

(

2α−1

α

)

and thus Ck
n is not α-biclique edge-choosable

for ⌈k
2
⌉ ≥

(

2α−1

α

)

.

Corollary 4. The biclique choice index ch′
B(P

k
n ) > max{2, α}, if k ≥ 2, n > 2k and

⌈

k
2

⌉

≥
(

2α−1

α

)

.

Proof. As the power of paths are a specific case of power of cycles then we can use the

proof of Theorem 3 to conclude that ch′
B(P

k
n ) > max{2, α}, if k ≥ 2, n > 2k and

⌈

k
2

⌉

≥
(

2α−1

α

)

5. Conclusion

In this paper we study the k-biclique-edge coloring choosability problem for some classes

of graphs. We prove that K3-free graphs are 2-star edge-choosable, chordal bipartite are 2-

biclique edge-choosable and are not 2-biclique edge-choosable and present a lower bound

for the biclique choice index of power of cycles and power of paths. We remark that these

last result is not tight. We provide polynomial algorithms to find 2-biclique (star) edge-

coloring for K3-free graphs and chordal bipartite graphs.
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