Advances in anti-Ramsey theory for random graphs

Guilherme Oliveira Mota^{1,2}

¹Centro de Matemática, Computação e Cognição, Universidade Federal do ABC Santo André, Brazil

²Instituto de Matemática e Estatística, Universidade de São Paulo São Paulo, Brazil

mota@ime.usp.br

Abstract. Given graphs G and H, we denote the following property by $G \xrightarrow{\mathrm{rb}} H$: for every proper edge-colouring of G (with an arbitrary number of colours) there is a rainbow copy of H in G, i.e., a copy of H with no two edges of the same colour. It is known that, for every graph H, the threshold function $p_H^{\mathrm{rb}} = p_H^{\mathrm{rb}}(n)$ of this property for the binomial random graph G(n,p) is asymptotically at most $n^{-1/m^{(2)}(H)}$, where $m^{(2)}(H)$ denotes the so-called maximum 2-density of H. In this work we discuss this and some recent results in the study of anti-Ramsey properties in random graphs, and we prove that if $H = C_4$ or $H = K_4$ then $p_H^{\mathrm{rb}} < n^{-1/m^{(2)}(H)}$, which is in contrast with the known facts that $p_{C_k}^{\mathrm{rb}} = n^{-1/m^{(2)}(C_k)}$ for $k \geqslant 7$, and $p_{K_\ell}^{\mathrm{rb}} = n^{-1/m^{(2)}(K_\ell)}$ for $k \geqslant 19$.

Resumo. Dados grafos G e H, denotamos a seguinte propriedade por G $\frac{\mathrm{rb}}{\mathrm{p}}$ H: para toda coloração própria das arestas de G (com uma quantidade arbitrária de cores) existe uma cópia multicolorida de H em G, i.e., uma cópia de H sem duas arestas da mesma cor. Sabe-se que, para todo grafo H, a função limiar $p_H^{\mathrm{rb}} = p_H^{\mathrm{rb}}(n)$ para essa propriedade no grafo aleatório binomial G(n,p) é assintoticamente no máximo $n^{-1/m^{(2)}(H)}$, onde $m^{(2)}(H)$ denota a assim chamada 2-densidade máxima de H. Neste trabalho discutimos esse e alguns resultados recentes no estudo de propriedades anti-Ramsey para grafos aleatórios, e mostramos que se $H = C_4$ ou $H = K_4$ então $p_H^{\mathrm{rb}} < n^{-1/m^{(2)}(H)}$, que está em contraste com os fatos conhecidos de que $p_{C_k}^{\mathrm{rb}} = n^{-1/m^{(2)}(C_k)}$ para $k \geqslant 7$, e $p_{K_\ell}^{\mathrm{rb}} = n^{-1/m^{(2)}(K_\ell)}$ para $k \geqslant 19$.

1. Introduction

Let r be a positive integer and let G and H be graphs. We denote by $G \to (H)_r$ the property that any colouring of the edges of G with at most r colours contains a monochromatic copy of H in G. In 1995, Rödl and Ruciński determined the threshold for the property $G(n,p) \to (H)_r$ for all graphs H. The maximum 2-density $m^{(2)}(H)$ of a graph H is denoted by $m^{(2)}(H) = \max\left\{\frac{|E(J)|-1}{|V(J)|-2}\colon J\subset H,\ |V(J)|\geqslant 3\right\}$, where we suppose $|V(H)|\geqslant 3$.

The author was supported by FAPESP (2013/11431-2, 2013/03447-6) and partially by CNPq (459335/2014-6). The author acknowledges the support of CAPES/DAAD PROBRAL (430/15).

Theorem 1 (Rödl and Ruciński [Rödl and Ruciński 1993, Rödl and Ruciński 1995]). Let H be a graph containing a cycle. Then, the threshold function $p_H = p_H(n)$ for the property $G(n,p) \to (H)_r$ is given by $p_H(n) = n^{-1/m^{(2)}(H)}$.

Given a graph H, we are interested in the following 'anti-Ramsey' type properties of the random graph G=G(n,p), denoted by $G\xrightarrow[p]{\operatorname{rb}} H$: for every *proper* edge-colouring of G, there exists a *rainbow* copy of H in G, i.e., a copy of H with no two edges of the same colour. The term 'anti-Ramsey' is used in different contexts, but we follow the terminology used in [Kohayakawa et al. 2014, Kohayakawa et al. 2017, Nenadov et al. 2017, Rödl and Tuza 1992]. Since the property $G(n,p)\xrightarrow[p]{\operatorname{rb}} H$ is increasing for every fixed graph H, we know that it admits a threshold function $p_H^{\mathrm{rb}}=p_H^{\mathrm{rb}}(n)$ [Bollobás and Thomason 1987].

The study of anti-Ramsey properties of random graphs was initiated by Rödl and Tuza, who proved in [Rödl and Tuza 1992] that for every ℓ there exists a fairly small p, such that $G(n,p) \xrightarrow[p]{\text{rb}} C_{\ell}$ almost surely. In fact, this result answers positively a question posed by Spencer (see [Erdős 1979], p. 29), who asked whether there are graphs of arbitrarily large girth that contain a rainbow cycle in any proper edge-colouring. We obtained the following result, which implies that $p_H^{\text{rb}} \leqslant n^{-1/m^{(2)}(H)}$ for any fixed graph H.

Theorem 2 (Kohayakawa, Konstadinidis and Mota [Kohayakawa et al. 2014]). *If* H *is a fixed graph, then there exists a constant* C > 0 *such that for* $p = p(n) \ge Cn^{-1/m^{(2)}(H)}$ *we asymptotically almost surely have* $G(n,p) \xrightarrow[p]{\text{rb}} H$.

The proof of Theorem 2 combines ideas from the regularity method for sparse graphs (see, e.g., [Kohayakawa 1997, Kohayakawa and Rödl 2003, Szemerédi 1978]) and a characterization of quasi-random sparse graphs (see, e.g., [Chung and Graham 2008]). This result was the beginning of a systematic study about anti-Ramsey problems in random graphs. In [Kohayakawa et al. 2017] we proved that for an infinite family of graphs F we have $p_F^{\rm rb} \ll n^{-1/m^{(2)}(F)}$, which is in contrast with Theorem 1. Before state this result precisely we need one more definition: given a graph H with $m^{(2)}(H) < 2$, put $\beta(H, K_3) = \frac{1}{3} \left(1 + \frac{1}{m^{(2)}(H)}\right)$. Theorem 3 below makes the discussion above precise.

Theorem 3. Suppose $k \ge 4$ and let F be the (k+1)-vertex graph composed by a k-vertex graph H with $1 < m^{(2)}(H) < 2$ and a vertex outside of H that is adjacent to two adjacent vertices of H. Then, for a suitably large constant D, if $p \ge Dn^{-\beta(H,K_3)}$, then $G(n,p) \xrightarrow{\mathrm{rb}} F$ almost surely.

We can easily conclude that for graphs F as in the statement of Theorem 3 we have $p_F^{\rm rb} \ll n^{-1/m^{(2)}(F)}$ since one can check that $1/m^{(2)}(F) = 1/m^{(2)}(K_3) = 1/2 < \beta(H,K_3) < 1/m^{(2)}(H)$. This makes the following question interesting: What are the graphs H for which $p_H^{\rm rb} = n^{-1/m^{(2)}(H)}$? Recently, some progress in answering this question was made in [Nenadov et al. 2017], which proved the following result.

Theorem 4 (Nenadov, Person, Škorić and Steger [Nenadov et al. 2017]). Let H be a cycle on at least 7 vertices or a complete graph on at least 19 vertices. Then $p_H^{\rm rb} = n^{-1/m^{(2)}(H)}$.

The authors of Theorem 4 remarked that their result could hold for all cycles and cliques of size at least 4. We conjecture that Theorem 4 can indeed be extended to cycles

and cliques of size at least 5, but not for C_4 and K_4 . In fact, we show that if H is C_4 or K_4 , then $p_H^{\rm rb}$ is asymptotically smaller than $n^{-1/m^{(2)}(H)}$.

Theorem 5. We have
$$p_{C_4}^{\rm rb} = n^{-3/4}$$
 and $p_{K_4}^{\rm rb} = n^{-7/15}$.

In what follows we give a brief outline of the proof of Theorem 5 for cycles C_4 . We remark that the proof for K_4 makes use of similar techniques.

2. Brief outline of the proof of Theorem 5 for C_4

First, we consider the *density* m(H) of a graph H, defined as $m(H) = \max \Big\{ \frac{|E(J)|}{|V(J)|} \colon J \subset H, \ |V(J)| \geqslant 1 \Big\}$. We will use of the following result.

Theorem 6 (Bollobás [Bollobás 2001]). Let H be a fixed graph. Then, $p = n^{-1/m(H)}$ is the threshold for the property that G contains a copy of H.

Note that for proving the upper bounds it is enough to show that G(n,p) a.s. contains a small graph that forces a rainbow copy of the given graphs in any proper edge-colouring. Since the proof for the upper bounds are much simpler than the proof for the lower bounds, we give the full proof of the upper bound in the case of C_4 .

Upper bound for $p_{C_4}^{\rm rb}$.

Consider the complete bipartite graph $K_{2,4}$ with partition classes $\{a,b\}$ and $\{w,x,y,z\}$. We will first show that any proper colouring of the edges of $K_{2,4}$ contains a rainbow copy of C_4 and then we conclude that for $p\gg n^{-3/4}$ a.s. G(n,p) contains a copy of $K_{2,4}$. Suppose by contradiction that there is a proper colouring χ of $E(K_{2,4})$ with no rainbow copy of C_4 . W.l.o.g. let $\chi(aw)=\chi(bx)=1$ and $\chi(ay)=\chi(bz)=2$. Since the colouring is proper the edges ax and az get different new colours, say, $\chi(ax)=3$ and $\chi(az)=4$. Since the C_4 induced by $\{a,x,b,y\}$ is not rainbow, we have $\chi(by)=3$. But then the C_4 induced by the vertices $\{a,x,b,z\}$ is rainbow, a contradiction. Therefore, any colouring of the edges of $K_{2,4}$ contains a rainbow C_4 . By Theorem 6, if $p\gg n^{-3/4}$, then a.s. G(n,p) contains a copy of $K_{2,4}$. Therefore, a.s. any proper colouring of the edges of G(n,p) contains a rainbow copy of C_4 , which implies that $p_{C_4}^{\rm rb}\leqslant n^{-1/m(K_{2,4})}=n^{-3/4}$.

Lower bound for $p_{C_4}^{\mathrm{rb}}$.

Now let us turn our attention to the lower bounds. Let G and H be graphs. We say that a sequence $F = H_1, \ldots, H_\ell$ of H-copies in G is an H-chain if for any $2 \le i \le \ell$ we have $E(H_i) \cap (E(H_1), \ldots, E(H_{i-1})) \ne \emptyset$. Note that a copy of H in G that does not intersect edge-wise with any other copy of H is a maximal H-chain composed by only one copy of H. Furthermore, the edge sets of two distinct maximal H-chains are disjoint. Thus, it is easy to see that each H in G belongs to exactly one maximal H-chain.

Let G = G(n,p) and let $p \ll n^{-3/4}$. The idea is to prove that a.s. there exists a proper colouring of G that contains no rainbow C_4 . In this proof we will consider C_4 -chains that are maximal with respect to the number of C_4 's. The first and more important step is to colour some edges in all maximal C_4 -chains so that all C_4 's in G will be non-rainbow and this partial colouring will be proper. Then, since all C_4 's are coloured we can just give a new colour for each one of the remaining uncoloured edges. For the first step, we use Markov's inequality and the union bound to obtain that a.s.

G does not contains any graph H with
$$m(H) \ge 4/3$$
 and $|V(H)| \le 12$. (1)

Let $F=C_4^1,\ldots,C_4^\ell$ be an arbitrary C_4 -chain in G with $m(F)\geqslant 4/3$. Let $2\leqslant i\leqslant \ell$ be the smallest index such that $F'=C_4^1,\ldots,C_4^i$ has density $m(F')\geqslant 4/3$. Then, since $F''=C_4^1,\ldots,C_4^{i-1}$ has density m(F'')<4/3, we can explore the structure of G(n,p) to conclude that $|V(F'')|\leqslant 10$, which implies $|V(F')|\leqslant 12$, a contradiction with (1). Therefore, a.s. G(n,p) contains no copy of C_4 -chains F with $m(F)\geqslant 4/3$. Thus, we may assume that all C_4 -chains F of G have density m(F)<4/3. In this case, it is possible to analyze carefully the structure of such chains, obtaining the desired colouring, which proves the claimed result.

References

- Bollobás, B. (2001). *Random graphs*. Cambridge Studies in Advanced Mathematics. Cambridge University Press.
- Bollobás, B. and Thomason, A. (1987). Threshold functions. *Combinatorica*, 7(1):35–38.
- Chung, F. and Graham, R. (2008). Quasi-random graphs with given degree sequences. *Random Structures & Algorithms*, 32(1):1–19.
- Erdős, P. (1979). Some old and new problems in various branches of combinatorics. In *Proc. 10th southeastern conference on combinatorics, graph theory and computing*, pages 19–37, Winnipeg, Man. Utilitas Math.
- Kohayakawa, Y. (1997). Szemerédi's regularity lemma for sparse graphs. In *Foundations of computational mathematics (Rio de Janeiro, 1997)*, pages 216–230. Springer, Berlin.
- Kohayakawa, Y., Konstadinidis, P. B., and Mota, G. O. (2014). On an anti-Ramsey threshold for random graphs. *European Journal of Combinatorics*, 40:26–41.
- Kohayakawa, Y., Konstadinidis, P. B., and Mota, G. O. (2017). On an anti-ramsey threshold for sparse graphs with one triangle. *Journal of Graph Theory*. In press.
- Kohayakawa, Y. and Rödl, V. (2003). Szemerédi's regularity lemma and quasirandomness. In *Recent advances in algorithms and combinatorics*, volume 11 of *CMS Books Math./Ouvrages Math. SMC*, pages 289–351. Springer, New York.
- Nenadov, R., Person, Y., Škorić, N., and Steger, A. (2017). An algorithmic framework for obtaining lower bounds for random Ramsey problems. *J. Combin. Theory Ser. B*, 124:1–38.
- Rödl, V. and Ruciński, A. (1993). Lower bounds on probability thresholds for Ramsey properties. In *Combinatorics, Paul Erdős is eighty, Vol. 1*, Bolyai Soc. Math. Stud., pages 317–346. János Bolyai Math. Soc., Budapest.
- Rödl, V. and Ruciński, A. (1995). Threshold functions for Ramsey properties. *J. Amer. Math. Soc.*, 8(4):917–942.
- Rödl, V. and Tuza, Z. (1992). Rainbow subgraphs in properly edge-colored graphs. *Random Structures Algorithms*, 3(2):175–182.
- Szemerédi, E. (1978). Regular partitions of graphs. In *Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976)*, volume 260 of *Colloq. Internat. CNRS*, pages 399–401. CNRS, Paris.