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Abstract. Given graphsG andH , we denote the following property byG rb
ÝÑp H:

for every proper edge-colouring of G (with an arbitrary number of colours)
there is a rainbow copy of H in G, i.e., a copy of H with no two edges of the
same colour. It is known that, for every graph H , the threshold function prbH “
prbH pnq of this property for the binomial random graph Gpn, pq is asymptotically
at most n´1{m

p2qpHq, where mp2qpHq denotes the so-called maximum 2-density
of H . In this work we discuss this and some recent results in the study of anti-
Ramsey properties in random graphs, and we prove that if H “ C4 or H “ K4

then prbH ă n´1{m
p2qpHq, which is in contrast with the known facts that prbCk

“

n´1{m
p2qpCkq for k ě 7, and prbK`

“ n´1{m
p2qpK`q for k ě 19.

Resumo. Dados grafosG eH , denotamos a seguinte propriedade porG rb
ÝÑp H:

para toda coloração própria das arestas de G (com uma quantidade ar-
bitrária de cores) existe uma cópia multicolorida de H em G, i.e., uma cópia
de H sem duas arestas da mesma cor. Sabe-se que, para todo grafo H , a
função limiar prbH “ prbH pnq para essa propriedade no grafo aleatório bino-
mial Gpn, pq é assintoticamente no máximo n´1{m

p2qpHq, onde mp2qpHq denota
a assim chamada 2-densidade máxima de H . Neste trabalho discutimos esse e
alguns resultados recentes no estudo de propriedades anti-Ramsey para grafos
aleatórios, e mostramos que se H “ C4 ou H “ K4 então prbH ă n´1{m

p2qpHq,
que está em contraste com os fatos conhecidos de que prbCk

“ n´1{m
p2qpCkq para

k ě 7, e prbK`
“ n´1{m

p2qpK`q para k ě 19.

1. Introduction
Let r be a positive integer and let G and H be graphs. We denote by G Ñ pHqr
the property that any colouring of the edges of G with at most r colours contains a
monochromatic copy of H in G. In 1995, Rödl and Ruciński determined the threshold
for the property Gpn, pq Ñ pHqr for all graphs H . The maximum 2-density mp2qpHq of
a graph H is denoted by mp2qpHq “ max

!

|EpJq|´1
|V pJq|´2

: J Ă H, |V pJq| ě 3
)

, where we
suppose |V pHq| ě 3.
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Theorem 1 (Rödl and Ruciński [Rödl and Ruciński 1993, Rödl and Ruciński 1995]). Let
H be a graph containing a cycle. Then, the threshold function pH “ pHpnq for the
property Gpn, pq Ñ pHqr is given by pHpnq “ n´1{m

p2qpHq.

Given a graph H , we are interested in the following ‘anti-Ramsey’ type proper-
ties of the random graph G “ Gpn, pq, denoted by G rb

ÝÑp H: for every proper edge-
colouring of G, there exists a rainbow copy of H in G, i.e., a copy of H with no two
edges of the same colour. The term ‘anti-Ramsey’ is used in different contexts, but
we follow the terminology used in [Kohayakawa et al. 2014, Kohayakawa et al. 2017,
Nenadov et al. 2017, Rödl and Tuza 1992]. Since the property Gpn, pq

rb
ÝÑp H is in-

creasing for every fixed graph H , we know that it admits a threshold function prbH “

prbH pnq [Bollobás and Thomason 1987].

The study of anti-Ramsey properties of random graphs was initiated by Rödl and
Tuza, who proved in [Rödl and Tuza 1992] that for every ` there exists a fairly small p,
such that Gpn, pq rb

ÝÑp C` almost surely. In fact, this result answers positively a question
posed by Spencer (see [Erdős 1979], p. 29), who asked whether there are graphs of
arbitrarily large girth that contain a rainbow cycle in any proper edge-colouring. We
obtained the following result, which implies that prbH ď n´1{m

p2qpHq for any fixed graph H .

Theorem 2 (Kohayakawa, Konstadinidis and Mota [Kohayakawa et al. 2014]). If H is a
fixed graph, then there exists a constant C ą 0 such that for p “ ppnq ě Cn´1{m

p2qpHq we
asymptotically almost surely have Gpn, pq rb

ÝÑp H .

The proof of Theorem 2 combines ideas from the regularity method for sparse
graphs (see, e.g., [Kohayakawa 1997, Kohayakawa and Rödl 2003, Szemerédi 1978]) and
a characterization of quasi-random sparse graphs (see, e.g., [Chung and Graham 2008]).
This result was the beginning of a systematic study about anti-Ramsey problems in
random graphs. In [Kohayakawa et al. 2017] we proved that for an infinite family of
graphs F we have prbF ! n´1{m

p2qpF q, which is in contrast with Theorem 1. Before state
this result precisely we need one more definition: given a graph H with mp2qpHq ă 2,
put βpH,K3q “

1
3

´

1` 1
mp2qpHq

¯

. Theorem 3 below makes the discussion above precise.

Theorem 3. Suppose k ě 4 and let F be the pk ` 1q-vertex graph composed by a k-
vertex graph H with 1 ă mp2qpHq ă 2 and a vertex outside of H that is adjacent to two
adjacent vertices of H . Then, for a suitably large constant D, if p ě Dn´βpH,K3q, then
Gpn, pq

rb
ÝÑp F almost surely.

We can easily conclude that for graphs F as in the statement of Theorem 3 we
have prbF ! n´1{m

p2qpF q since one can check that 1{mp2qpF q “ 1{mp2qpK3q “ 1{2 ă
βpH,K3q ă 1{mp2qpHq. This makes the following question interesting: What are the
graphs H for which prbH “ n´1{m

p2qpHq? Recently, some progress in answering this
question was made in [Nenadov et al. 2017], which proved the following result.

Theorem 4 (Nenadov, Person, Škorić and Steger [Nenadov et al. 2017]). LetH be a cycle
on at least 7 vertices or a complete graph on at least 19 vertices. Then prbH “ n´1{m

p2qpHq.

The authors of Theorem 4 remarked that their result could hold for all cycles and
cliques of size at least 4. We conjecture that Theorem 4 can indeed be extended to cycles



and cliques of size at least 5, but not for C4 and K4. In fact, we show that if H is C4 or
K4, then prbH is asymptotically smaller than n´1{mp2qpHq.

Theorem 5. We have prbC4
“ n´3{4 and prbK4

“ n´7{15.
In what follows we give a brief outline of the proof of Theorem 5 for cycles C4.

We remark that the proof for K4 makes use of similar techniques.

2. Brief outline of the proof of Theorem 5 for C4

First, we consider the density mpHq of a graph H , defined as mpHq “

max
!

|EpJq|
|V pJq|

: J Ă H, |V pJq| ě 1
)

. We will use of the following result.

Theorem 6 (Bollobás [Bollobás 2001]). Let H be a fixed graph. Then, p “ n´1{mpHq is
the threshold for the property that G contains a copy of H .

Note that for proving the upper bounds it is enough to show that Gpn, pq a.s.
contains a small graph that forces a rainbow copy of the given graphs in any proper edge-
colouring. Since the proof for the upper bounds are much simpler than the proof for the
lower bounds, we give the full proof of the upper bound in the case of C4.

Upper bound for prbC4
.

Consider the complete bipartite graph K2,4 with partition classes ta, bu and
tw, x, y, zu. We will first show that any proper colouring of the edges of K2,4 contains a
rainbow copy of C4 and then we conclude that for p " n´3{4 a.s. Gpn, pq contains a copy
of K2,4. Suppose by contradiction that there is a proper colouring χ of EpK2,4q with no
rainbow copy of C4. W.l.o.g. let χpawq “ χpbxq “ 1 and χpayq “ χpbzq “ 2. Since
the colouring is proper the edges ax and az get different new colours, say, χpaxq “ 3 and
χpazq “ 4. Since the C4 induced by ta, x, b, yu is not rainbow, we have χpbyq “ 3. But
then the C4 induced by the vertices ta, x, b, zu is rainbow, a contradiction. Therefore, any
colouring of the edges of K2,4 contains a rainbow C4. By Theorem 6, if p " n´3{4, then
a.s. Gpn, pq contains a copy of K2,4. Therefore, a.s. any proper colouring of the edges of
Gpn, pq contains a rainbow copy of C4, which implies that prbC4

ď n´1{mpK2,4q “ n´3{4.

Lower bound for prbC4
.

Now let us turn our attention to the lower bounds. Let G and H be graphs. We
say that a sequence F “ H1, . . . , H` of H-copies in G is an H-chain if for any 2 ď i ď `
we have EpHiq X pEpH1q, . . . , EpHi´1qq ‰ H. Note that a copy of H in G that does not
intersect edge-wise with any other copy of H is a maximal H-chain composed by only
one copy of H . Furthermore, the edge sets of two distinct maximal H-chains are disjoint.
Thus, it is easy to see that each H in G belongs to exactly one maximal H-chain.

Let G “ Gpn, pq and let p ! n´3{4. The idea is to prove that a.s. there exists a
proper colouring of G that contains no rainbow C4. In this proof we will consider C4-
chains that are maximal with respect to the number of C4’s. The first and more important
step is to colour some edges in all maximal C4-chains so that all C4’s in G will be non-
rainbow and this partial colouring will be proper. Then, since all C4’s are coloured we
can just give a new colour for each one of the remaining uncoloured edges. For the first
step, we use Markov’s inequality and the union bound to obtain that a.s.

G does not contains any graph H with mpHq ě 4{3 and |V pHq| ď 12. (1)



Let F “ C1
4 , . . . , C

`
4 be an arbitrary C4-chain in G with mpF q ě 4{3. Let 2 ď i ď `

be the smallest index such that F 1 “ C1
4 , . . . , C

i
4 has density mpF 1q ě 4{3. Then, since

F 2 “ C1
4 , . . . , C

i´1
4 has density mpF 2q ă 4{3, we can explore the structure of Gpn, pq

to conclude that |V pF 2q| ď 10, which implies |V pF 1q| ď 12, a contradiction with (1).
Therefore, a.s. Gpn, pq contains no copy of C4-chains F with mpF q ě 4{3. Thus, we
may assume that all C4-chains F of G have density mpF q ă 4{3. In this case, it is
possible to analyze carefully the structure of such chains, obtaining the desired colouring,
which proves the claimed result.
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