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Abstract. Deciding if a graph is ∆-edge-colourable (resp. (∆+1)-total colour-

able), although it is an NP-complete problem for graphs in general, is polyno-

mially solvable for interval graphs of odd (resp. even) maximum degree ∆. An

interesting superclass of the proper interval graphs are the proper circular-arc

graphs, for which we suspect that ∆-edge-colourability is linear-time decidable.

This work presents sufficient conditions for ∆-edge-colourability, (∆+ 1)-total

colourability, and (∆+2)-total colourability of proper circular-arc graphs. Our

proofs are constructive and yield polynomial-time algorithms.

1. Introduction

The chromatic index and the total chromatic number of a graph G with maximum degree

∆ clearly satisfy χ′(G) ≥ ∆ and χ′′(G) ≥ ∆ + 1 (see definitions in the sequel). Also,

χ′(G) ≤ ∆ + 1 [Vizing 1964], and the Total Colouring Conjecture states that χ′′(G) ≤
∆ + 2 [Behzad 1965, Vizing 1968]. A graph G is Class 1 if χ′(G) = ∆, or Class 2

otherwise. Since no graph with χ′′(G) ≥ ∆+3 is known, graphs with χ′′(G) = ∆+1 have

been called Type 1, and those with χ′′(G) = ∆ + 2 Type 2. Deciding if G is Class 1 and

deciding if G is Type 1 are NP-complete problems [Holyer 1981, Sánchez-Arroyo 1989].

The classes of the unit and the proper interval graphs are the same [Roberts 1969],

but the classes of the unit and the proper circular-arc graphs are not (see Figure 1). The

Figure 1. A proper non-unit circular-arc graph with a corresponding arc model

Total Colouring Conjecture holds for proper interval graphs, often referred to as indif-

ference graphs, which are Class 1 when they have odd ∆, and Type 1 when ∆ is even

[Figueiredo et al. 1997]. For edge-colouring of indifference graphs with even ∆ or total

colouring of these graphs with odd ∆, partial results are known [Figueiredo et al. 2003,
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Campos et al. 2012]. Recall that interval graphs are perfect graphs and, thus, admit poly-

nomial-time vertex-colouring algorithms [Grötschel et al. 1981], in contrast to vertex-col-

ouring of circular-arc graphs, which is NP-hard [Garey et al. 1980]. To the best of our

knowledge, there is no published work on total or edge-colouring of circular-arc graphs.

LetG be an n-vertex proper circular-arc graph. We show that if n ≡ 0 (mod (∆+
1)), or if G has a maximal clique of size 2 and n 6≡ k (mod (∆ + 1)) for all k ∈ {1,∆},

then: χ′(G) = ∆ and χ′′(G) ≤ ∆ + 2 if ∆ is odd; χ′′(G) = ∆ + 1 if ∆ is even. This

implies that the Total Colouring Conjecture holds for the class of all such graphs.

This paper is organised as follows: the remaining of this section provides further

definitions and discusses other related results in the literature; Section 2 presents our

results; at last, Section 3 makes remarks on edge-colouring proper circular-arc graphs.

Preliminary definitions and other related results

This work deals only with simple graphs, referred to simply as graphs. Usual terms con-

cerning graph-theoretical concepts follow their definitions and notation in the literature.

In particular, the degree of a vertex u in a graphG, the set of neighbours of u inG, and the

set of the edges incident to u in G are denoted by dG(u), NG(u), and ∂G(u), respectively.

Let G = (V,E) be a graph and C a set of t colours. A function with C as its

codomain is: a t-edge-colouring if its domain is E and it is injective in ∂G(u) for all

u ∈ V ; a t-total colouring if its domain is V ∪E and it is injective in ∂G(u) ∪ {u} for all

u ∈ V and injective in {u, v} for all uv ∈ E. In a total or edge-colouring, we say that a

colour is missing at a vertex u if it is not assigned to u or to any edge incident to u. The

chromatic index (denoted by χ′(G)) and the total chromatic number (denoted by χ′′(G))
of G are the least t for which G is t-edge-colourable and t-total colourable, respectively.

An n-vertex graph with more than ∆⌊n/2⌋ edges (thus Class 2, since at most

⌊n/2⌋ edges can be coloured the same) is said to be overfull. It is conjectured that every

graph G with ∆ > n/3 is Class 2 if and only if it is subgraph-overfull (shortly, SO), i.e. if

G has an overfull subgraph with the same maximum degree [Hilton and Johnson 1987].

The complete graph Kn is: Class 1 and Type 2 if n is even; Class 2 and Type 1

if n is odd [Behzad et al. 1967]. Let V (Kn) := {0, . . . , n − 1} and let even(n) be 1 if

n is even or 0 otherwise. We call the canonical total and edge-colourings of the Kn the

functions ϕeven
edge, ϕ

odd
edge, and ϕtotal given by: ϕeven

edge(uv) := (u+ v) mod (n− 1), if neither u

nor v is n − 1; ϕeven
edge(uv) := (2u) mod (n − 1), if v = n − 1; ϕodd

edge(uv) = ϕtotal(uv) :=
(u+ v) mod (n+ even(n)); ϕtotal(u) := (2u) mod (n+ even(n)).

A circular-arc graph G is the intersection graph of a finite set S of arcs of a circle,

in which case S is an arc model corresponding toG. Furthermore, G is said to be: proper,

if there is a corresponding arc model wherein no arc properly contains another; a unit

circular-arc graph, if there is a model wherein all the arcs have equal length. The vertices

of a proper circular-arc graph admit a proper circular-arc order, i.e. a circular order in

which vertices belonging to the same maximal clique appear consecutively. Homonymous

terms are defined for interval graphs analogously, but being S a set of intervals on the real

line and the proper interval (or indifference) order a linear order. Interval and circular-arc

graphs can be recognised in linear time [Booth and Lueker 1976, McConnell 2003].

A pullback from G1 = (V1, E1) to G2 = (V2, E2) is a homeomorphism π : V1 →



V2 (i.e. π(u)π(v) ∈ E2 for all uv ∈ E1) injective in NG1
(u) ∪ {u} for all u ∈ V1. If such

a pullback exists and G2 has a: t-edge-colouring ϕ, then a t-edge-colouring for G1 can be

given by ψ(uv) := ϕ(π(u)π(v)); t-total colouring ϕ, then a t-total colouring for G1 can

be given by ψ(uv) := ϕ(π(u)π(v)) and ψ(u) := ϕ(π(u)) [Figueiredo et al. 1997].

2. Results

Throughout this section, letG be an n-vertex proper circular-arc graph. Remark that when

we say that G is ∆+ 2-total colourable, it does not mean that G is Type 2.

Theorem 1. If n ≡ 0 (mod (∆ + 1)), then G is: Class 1 and (∆ + 2)-total colourable

if ∆ is odd; Type 1 if ∆ is even.

Proof. It suffices to show that if n ≡ 0 (mod (∆ + 1)), then there is a pullback from

G to the K∆+1. Let σ := u0, . . . , un−1 be a proper circular-arc order of G and 0, . . . ,∆
be the vertices of the K∆+1. Assume, by the sake of contradiction, that the function

π : V (G) → V (K∆+1) defined by π(ui) := i mod (∆ + 1) is not a pullback from G to

the K∆+1. As π is clearly a homeomorphism, there must be two distinct vertices v1 and

v2 in V (G) which have a neighbour w in common and satisfy π(v1) = π(v2). However,

since σ is a proper circular-arc order of G, all vertices between v1 and v2 in σ are thus

neighbours of w, which straightforwardly implies dG(w) > ∆. �

Theorem 2. If n 6≡ k (mod (∆+1)), for all k ∈ {1,∆}, and G has a maximal clique of

size 2, then G is: Class 1 and (∆ + 2)-total colourable if ∆ is odd; Type 1 if ∆ is even.

Proof. If r := n mod (∆ + 1) = 0, we are done by Theorem 1. If ∆ ≤ 2, then G
is a cycle or a disjoint union of paths and the theorem clearly holds. Hence, we assume

that ∆ ≥ 3 and r 6= 0. Let σ := u0, . . . , un−1 be a proper circular-arc order of G,

being {u0, un−1} a maximal clique. Because σ is a proper circular-arc order, we have

u∆ /∈ NG(u0) and un−1−∆ /∈ NG(un−1), otherwise dG(u0) > ∆ or dG(un−1) > ∆.

Let V (K∆+1) := {0, . . . ,∆} and let ϕ ∈ {ϕeven
edge, ϕtotal} be the canonical total or

edge-colouring of the K∆+1. The function π : V (G′) → V (K∆+1) defined by π(ui) :=
i mod (∆ + 1) is clearly a pullback from G′ := G − un−1u0 to the K∆+1 and brings a

total or an edge-colouring ψ of G′ using the same set of colours as ϕ. Ergo, we have only

to colour un−1u0 in order to complete the proof.

Observe that π(un−1) = r−1, π(un−1−∆) = r, and, since neither r nor r−1 is ∆,

ϕ(r, r−1) = (2r−1) mod d =: q, with d := ∆ if ϕ = ϕeven
edge, or d := ∆+1+even(∆+1)

if ϕ = ϕtotal. Therefore, as π(v) 6= ∆ and π(w) 6= r for all v ∈ NG′(u0) and all w ∈
NG′(un−1), the colour ϕ(0,∆) is missing at u0 and the colour q at un−1. If q = ϕ(0,∆),
then we assign the colour q to un−1u0 and we are done. Otherwise, since q ∈ {0, . . . ,∆},

we exchange ∆ and q in the codomain of π, that is, we redefine π so that every vertex

which has been mapped by π to ∆ is now mapped to q and vice versa. Notice that the

images of u0, un−1−∆, and un−1 by π remain the same, but π(u∆) becomes q, which now

is also a colour missing at u0. Then, we colour un−1u0 with q. �

3. Final remarks

Let A be the class of the proper circular-arc graphs with odd ∆ and a maximal clique of

size 2. Overfull graphs in A can be constructed for n ≡ 1 and for n ≡ ∆ (mod (∆+ 1))
(see Figures 2(a) and 2(b), respectively). Since Theorem 2 can be interestingly used to



a) b)

Figure 2. Two overfull graphs in A

show a graph in A is SO if and only if it is overfull, we conclude proposing the following:

Conjecture. A graph in A is Class 2 if and only if it is overfull.
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