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Abstract. Neighborhood intersection is a fundamental metric in social network
analysis and data mining, and plays a central role in the computation of simi-
larity metrics and measures. In this paper, we propose an efficient randomized
algorithm, using P3 sampling, to compute the neighborhood intersection for all
combinations of pairs of vertices in a graph. With probability at least 1− δ, we
ensure that all approximations of the algorithm are at most ϵ away from their
true value. We apply techniques from computational learning theory to obtain a
sample size independent of any quantitative property of the graph.

Resumo. A interseção de vizinhança é uma métrica fundamental em análise de
redes sociais e mineração de dados, e desempenha um papel central no cálculo
de métricas e medidas de similaridade. Nesse artigo, propomos um algoritmo
aleatorizado eficiente, utilizando amostragem de P3, para calcular a interseção
de vizinhança para todas as combinações de pares de vértices em um grafo.
Com probabilidade de pelo menos 1−δ, garantimos que todas as aproximações
do algoritmo estão a uma distância de no máximo ϵ de seu valor real. Aplicamos
técnicas da teoria de aprendizado computacional para obter um tamanho de
amostra independente de qualquer propriedade quantitativa do grafo.

1. Introdução
A interseção de vizinhança de dois vértices em um grafo é definida como |N(u) ∩
N(v)|, onde N(u) e N(v) são as vizinhanças dos vértices u e v, respectivamente.
Ela desempenha um papel central no cálculo de métricas e medidas de similaridade
[Easley and Kleinberg 2010, Newman 2010, Menczer et al. 2020]. Muitas métricas es-
tabelecidas (como similaridade de cosseno, sobreposição de vizinhança e equivalência
estrutural) são baseadas em versões normalizadas da interseção de vizinhança. Por
isso, versões normalizadas podem ser de maior interesse do que a métrica não norma-
lizada. A normalização é útil, pois fornece valores relativos ao grafo, que podem ser
mais informativos do que medidas absolutas [Ribeiro and Vignatti 2025]. Neste artigo,
introduzimos a interseção da vizinhança P3-normalizada, uma nova normalização para
a interseção da vizinhança. A desnormalização dessa métrica, que permite obter re-
sultados diretos para a métrica original, pode ser realizada com técnicas de Ribeiro e
Vignatti [Ribeiro and Vignatti 2025], mas não será tratada aqui devido a limitações de
espaço. Apresentaremos um algoritmo para determinar, para todos os pares de vértices
de um grafo, o tamanho da interseção de vizinhança normalizada, baseado na amostra-
gem de caminhos P3. Ao contrário das abordagens tradicionais que utilizam amostragem
de estruturas mais simples, como vértices e arestas [Ribeiro and Vignatti 2025], nossa
técnica explora a amostragem de uma estrutura mais complexa, resultando em um algo-
ritmo mais eficiente. Desenvolvemos um método de amostragem uniforme e eficiente



de P3, um desafio não trivial em comparação com a amostragem de vértices ou arestas,
que pode ser de interesse geral. Além disso, aplicamos técnicas avançadas de amostra-
gem da teoria do aprendizado computacional para determinar limitantes rigorosos para
o número de amostras necessárias, garantindo parâmetros de erro e confiança deseja-
dos. Embora a computação exata de interseção de vizinhança seja pouco estudada, exis-
tem métodos aproximados, como os de Besta et al. [Besta et al. 2021, Besta et al. 2022]
para interseções únicas (apenas um par de vértices). Além disso, Ribeiro e Vignatti
[Ribeiro and Vignatti 2025] abordam o problema de interseção de vizinhança de todos
os pares, alcançando tempo O(∆ log∆+ |E|) em sua melhor estratégia, onde ∆ é o grau
máximo do grafo G = (V,E). No mesmo cenário, nossa abordagem de amostragem de
P3 apresenta um tempo de execução de O(|E|), demonstrando maior eficiência teórica e
justificando a relevância do presente trabalho.

2. Preliminares
Seja G = (V,E) um grafo não direcionado. Um P3 é definido como sendo três vértices
{u, v, w} que possuem as arestas {u, v} e {v, w}. P3 é o conjunto de todos os P3 de G.

Definição 1. A interseção da vizinhança i(u, v) de dois vértices u e v é a quantidade de
vizinhos em comum de u e v, e.g. i(u, v) = |N(u) ∩N(v)|.

Conforme explicado na Seção 1, a normalização dos valores i(u, v) não apenas
gera resultados úteis, mas também enriquece o seu significado. Neste trabalho, focamos
no cálculo de uma versão normalizada especı́fica, apresentada na Definição 2.

Definição 2. A interseção da vizinhança P3-normalizada iP3(u, v) do par de vértices u, v
é dada por iP3(u, v) =

i(u,v)
|P3| .

Os valores iP3(u, v) representam o quão expressiva é a interseção da vizinhança de
um par de vértices u, v, independente de qualquer propriedade do grafo. Se iP3(u, v) = 1,
então u e v compartilham a maior quantidade possı́vel de vizinhos. Se iP3(u, v) = 0,
então u e v não compartilham nenhum vizinho.

Quando desejamos estimar múltiplos valores simultaneamente, a estratégia co-
mum envolve a obtenção de limitantes individuais usando desigualdades probabilı́sticas
clássicas, como as de Chernoff e Hoeffding, e, em seguida, a combinação desses li-
mitantes individuais para obter um limitante global desejado através do limitante da
união. Uma desvantagem dessa abordagem é que o limite da união leva a um tama-
nho de amostra que depende da quantidade de valores que se deseja estimar. A di-
mensão Vapnik-Chervonenkis (VC), proveniente da teoria de aprendizagem computacio-
nal [Shalev-Shwartz and Ben-David 2014], oferece um método mais refinado, limitando
o tamanho da amostra com base na “complexidade” do conjunto de valores, em vez de
sua cardinalidade. A seguir, apresentamos definições e teoremas a respeito desse assunto.

Um espaço de intervalos (X,R) consiste em um conjunto X e uma famı́lia
R de subconjuntos de X . A projeção de A ⊆ X em R é PR(A) = {A ∩ R :
R ∈ R}. Um conjunto A é estilhaçado por R se PR(A) = 2A. A dimensão VC
de um espaço de intervalo (X,R), denotado dVC(R), é o tamanho do maior conjunto
A ⊆ X estilhaçado porR. Para uma explicação mais aprofundada da dimensão VC, veja
[Shalev-Shwartz and Ben-David 2014].

Definição 3. Seja (X,R) um espaço de intervalo com uma distribuição de probabilidade
π sobre X , pR = Prπ(R) a probabilidade de um intervalo R ∈ R, e p̂R a frequência



relativa de R com base em uma amostra S. Para ϵ ∈ (0, 1), S é uma ϵ-aproximação para
(X,R) se |p̂R − pR| ≤ ϵ,∀R ∈ R.
Teorema 1 ([Har-Peled and Sharir 2011], Teo. 2.12). Seja (X,R) um espaço de intervalo
com dimensão VC dVC(R) ≤ d, e seja π uma distribuição de probabilidade em X . Para
ϵ, δ ∈ (0, 1), e uma amostra S de tamanho m extraı́da de π, com probabilidade pelo
menos 1 − δ, S é uma ϵ-aproximação de (X,R) se m ≥ c

ϵ2

(
d+ ln 1

δ

)
, onde c é uma

constante positiva.
Por limitações de espaço, as provas dos teoremas serão omitidas neste trabalho e

apresentadas em sua respectiva versão estendida.

3. Estimativa Usando Amostragem de P3

Esta seção apresenta a nossa estratégia para estimar as interseções normalizadas iP3(u, v).

3.1. Espaço de Intervalos e Resultados de Dimensão VC
A quantidade de amostras necessárias ao algoritmo baseia-se no resultado do Teorema 1,
que, por sua vez, utiliza os valores da dimensão VC de um espaço de intervalos definidos
para o problema. Abordaremos esse assunto a seguir.

Seja P3 o espaço amostral e EP3(u, v) o evento em que uma amostra P3 pertence
à interseção das vizinhanças de u e v. Temos que

Pr(EP3(u, v)) =
|N(u) ∩N(v)|

|P3|
= iP3(u, v),

onde a última equação segue da Definição 2. Assim, ao amostrar caminhos P3, aproxi-
mamos iP3(u, v) estimando a probabilidade de EP3(u, v). Seja (P3,RP3) um espaço de
intervalos, onde RP3 é o conjunto de todos os eventos EP3(u, v) para u, v ∈ V , i.e.,
RP3 = {EP3(u, v) | u, v ∈ V }. O Teorema 2 limita a dimensão VC de (P3,RP3).

Teorema 2. A dimensão VC de (P3,RP3) é dVC(RP3) = 1 se |P3| ≥ 1, e 0 caso contrário.

3.2. Algoritmo
Como discutido na seção anterior, para calcular a interseção da vizinhança de u e v
iP3(u, v), podemos estimar a probabilidade do evento EP3(u, v). Utilizamos a frequência
relativa de EP3(u, v) para definir o nosso estimador îP3(u, v), i.e.,

îP3(u, v) =
1

m

m∑
i=1

1EP3(u,v)(si),

onde 1EP3(u,v)(si) é uma variável indicadora que assume 1 se si ∈ EP3(u, v) e 0 caso
contrário. Note que îP3(u, v) é um estimador não enviesado para iP3(u, v), ou seja,
E[̂iP3(u, v)] = iP3(u, v). Tendo definido iP3(u, v) e îP3(u, v) como a probabilidade de um
evento e sua frequência relativa, respectivamente, podemos construir uma ϵ-aproximação
(Definição 3) para (P3,RP3). Formalmente, nosso algoritmo satisfaz,

Pr
(
∀u, v ∈ V,

∣∣∣iP3(u, v)− îP3(u, v)
∣∣∣ ≤ ϵ

)
≥ 1− δ.

Ou seja, com probabilidade pelo menos 1 − δ, o Algoritmo 1 garante que as estimativas
para todos os pares de vértices estejam dentro de um erro máximo de ϵ em relação aos
seus valores reais.



Algoritmo 1: INTERSEÇÃOVIZINHANÇAALEATORIZADO(G, ϵ, δ)
Entrada: Grafo G = (V,E), precisão ϵ, confiança 1− δ
Saı́da : Estimativa îP3(u, v) para todo par u, v ∈ V

m←
⌈

c
ϵ2

(
1 + ln 1

δ

)⌉
for i← 1 to m do
{u, x, v} ← AMOSTRARP3(G)

îP3(u, v)← îP3(u, v) +
1
m

return îP3(u, v) para todos os pares u, v ∈ V

Teorema 3. Dado um grafo G = (V,E), parâmetros ϵ e δ, as estimativas îP3(u, v) retor-
nadas pelo Algoritmo 1 satisfazem Pr

(
∀u, v ∈ V,

∣∣∣iP3(u, v)− îP3(u, v)
∣∣∣ ≤ ϵ

)
≥ 1− δ.

O tempo de execução do Algoritmo 1 depende do tempo de execução da função
AMOSTRARP3, que será apresentado na Seção 3.3.

3.3. Amostragem Uniforme de P3

Nesta seção, descrevemos um método para amostrar uniformemente um P3 de um grafo
G. Para cada aresta e = {u, v} ∈ E, definimos pe = du+dv−2

2|P3| , onde du e dv são os graus
dos vértices u e v, respectivamente. A amostragem com pesos pe pode ser feita usando
o método Alias [Walker 1974] em tempo O(|E|) para pré-processar os dados do grafo, e
O(1) para fazer cada amostragem. O Algoritmo 2 descreve o processo.

Algoritmo 2: AMOSTRARP3(G)
Entrada: Grafo G = (V,E)
Saı́da : Um P3 amostrado uniformemente de P3

1. Amostre uma aresta e = {u, x} com probabilidade pe.
2. Amostre um vértice v de N(u) ∪N(x) \ {u, x} uniformemente.
3. Retorne o caminho {u, x, v}.

Para definir os valores pe no Passo 1, é necessário saber |P3|. O Lema 4 fornece
um resultado útil para esse propósito.

Lema 4. O número total de P3 no grafo G é dado por |P3| =
∑

{u,v}∈E
du+dv−2

2
.

O Teorema 5 mostra a corretude e o tempo de execução do Algoritmo 2. O tempo
de execução, em particular, é baseado no método Alias e no Lema 4.

Teorema 5. O Algoritmo 2 é de tempo O(|E|) e amostra uniformemente um P3 de P3.

Finalmente, usando os resultados apresentados, podemos enunciar o Teorema 6.

Teorema 6. O tempo de execução do Algoritmo 1 é O(|E|).

4. Considerações Finais
Propomos um algoritmo que computa a interseção normalizada entre todos os pares de
vértices com erro ϵ e probabilidade 1 − δ. Seu tempo de execução é O(|E|), sendo mais
eficiente do que outros no mesmo cenário. Ele utiliza amostragem de P3, que acaba sendo
o gargalo do tempo de execução, e métodos mais eficientes de amostragem, como MCMC
(Monte Carlo via Cadeias de Markov), podem ser explorados no futuro.
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