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Abstract. Neighborhood intersection is a fundamental metric in social network
analysis and data mining, and plays a central role in the computation of simi-
larity metrics and measures. In this paper, we propose an efficient randomized
algorithm, using Ps sampling, to compute the neighborhood intersection for all
combinations of pairs of vertices in a graph. With probability at least 1 — ), we
ensure that all approximations of the algorithm are at most ¢ away from their
true value. We apply techniques from computational learning theory to obtain a
sample size independent of any quantitative property of the graph.

Resumo. A intersecdo de vizinhanca é uma métrica fundamental em andlise de
redes sociais e mineracdo de dados, e desempenha um papel central no cdlculo
de métricas e medidas de similaridade. Nesse artigo, propomos um algoritmo
aleatorizado eficiente, utilizando amostragem de Ps, para calcular a intersegdo
de vizinhanga para todas as combinacées de pares de vértices em um grafo.
Com probabilidade de pelo menos 1 — 6, garantimos que todas as aproximagaoes
do algoritmo estdo a uma distancia de no mdximo € de seu valor real. Aplicamos
técnicas da teoria de aprendizado computacional para obter um tamanho de
amostra independente de qualquer propriedade quantitativa do grafo.

1. Introducao

A intersegdo de vizinhanga de dois vértices em um grafo é definida como |N(u) N
N(v)|, onde N(u) e N(v) sdo as vizinhangas dos vértices u e v, respectivamente.
Ela desempenha um papel central no calculo de métricas e medidas de similaridade
[Easley and Kleinberg 2010, Newman 2010, Menczer et al. 2020]. Muitas métricas es-
tabelecidas (como similaridade de cosseno, sobreposi¢do de vizinhanga e equivaléncia
estrutural) sdo baseadas em versdes normalizadas da interse¢do de vizinhanca. Por
isso, versdes normalizadas podem ser de maior interesse do que a métrica ndo norma-
lizada. A normalizacdo € util, pois fornece valores relativos ao grafo, que podem ser
mais informativos do que medidas absolutas [Ribeiro and Vignatti 2025]. Neste artigo,
introduzimos a intersecdo da vizinhanga Ps;-normalizada, uma nova normaliza¢do para
a intersecdo da vizinhanga. A desnormalizacdo dessa métrica, que permite obter re-
sultados diretos para a métrica original, pode ser realizada com técnicas de Ribeiro e
Vignatti [Ribeiro and Vignatti 2025], mas ndo serd tratada aqui devido a limitacdes de
espaco. Apresentaremos um algoritmo para determinar, para todos os pares de vértices
de um grafo, o tamanho da intersecdo de vizinhanga normalizada, baseado na amostra-
gem de caminhos P3. Ao contrério das abordagens tradicionais que utilizam amostragem
de estruturas mais simples, como vértices e arestas [Ribeiro and Vignatti 2025], nossa
técnica explora a amostragem de uma estrutura mais complexa, resultando em um algo-
ritmo mais eficiente. Desenvolvemos um método de amostragem uniforme e eficiente



de P5, um desafio ndo trivial em comparagdo com a amostragem de vértices ou arestas,
que pode ser de interesse geral. Além disso, aplicamos técnicas avancadas de amostra-
gem da teoria do aprendizado computacional para determinar limitantes rigorosos para
o numero de amostras necessarias, garantindo parametros de erro e confianca deseja-
dos. Embora a computagdo exata de intersecdo de vizinhanga seja pouco estudada, exis-
tem métodos aproximados, como os de Besta et al. [Besta et al. 2021, Besta et al. 2022]
para interse¢Oes Unicas (apenas um par de vértices). Além disso, Ribeiro e Vignatti
[Ribeiro and Vignatti 2025] abordam o problema de interse¢do de vizinhanca de todos
os pares, alcancando tempo O(A log A + |E|) em sua melhor estratégia, onde A é o grau
maximo do grafo G = (V, E)). No mesmo cendrio, nossa abordagem de amostragem de
P; apresenta um tempo de execugdo de O(|E|), demonstrando maior eficiéncia tedrica e
justificando a relevancia do presente trabalho.

2. Preliminares

Seja G = (V, E') um grafo ndo direcionado. Um P; é definido como sendo trés vértices
{u,v,w} que possuem as arestas {u, v} e {v,w}. P3 é o conjunto de todos os P; de G.

Definicao 1. A intersecdo da vizinhanga i(u,v) de dois vértices u e v é a quantidade de
vizinhos em comum de u e v, e.g. i(u,v) = |N(u) N N(v)|.

Conforme explicado na Secao 1, a normalizag@o dos valores i(u, v) ndo apenas
gera resultados tteis, mas também enriquece o seu significado. Neste trabalho, focamos
no cdlculo de uma versao normalizada especifica, apresentada na Defini¢do 2.

Definicao 2. A intersecdo da vizinhan¢a Ps-normalizada ip;(u,v) do par de vértices u, v
P . _ i(u,w)
¢ dada por ips3(u,v) = R

Os valores ip3(u, v) representam o quio expressiva € a interse¢do da vizinhanga de
um par de vértices u, v, independente de qualquer propriedade do grafo. Se ip3(u,v) = 1,
entdo u e v compartilham a maior quantidade possivel de vizinhos. Se ip3(u,v) = 0,

entdo u € v ndo compartilham nenhum vizinho.

Quando desejamos estimar multiplos valores simultaneamente, a estratégia co-
mum envolve a obtencao de limitantes individuais usando desigualdades probabilisticas
classicas, como as de Chernoff e Hoeffding, e, em seguida, a combinacdo desses li-
mitantes individuais para obter um limitante global desejado através do limitante da
unido. Uma desvantagem dessa abordagem é que o limite da unido leva a um tama-
nho de amostra que depende da quantidade de valores que se deseja estimar. A di-
mensao Vapnik-Chervonenkis (VC), proveniente da teoria de aprendizagem computacio-
nal [Shalev-Shwartz and Ben-David 2014], oferece um método mais refinado, limitando
o tamanho da amostra com base na “complexidade” do conjunto de valores, em vez de
sua cardinalidade. A seguir, apresentamos defini¢des e teoremas a respeito desse assunto.

Um espaco de intervalos (X, R) consiste em um conjunto X e uma familia
R de subconjuntos de X. A projecdo de A C X em R é Pr(A) = {ANR
R € R}. Um conjunto A é estilhacado por R se Pr(A) = 24. A dimensdo VC
de um espago de intervalo (X, R), denotado dyc(R), € o tamanho do maior conjunto
A C X estilhacado por R. Para uma explicagcdo mais aprofundada da dimensao VC, veja
[Shalev-Shwartz and Ben-David 2014].

Definicao 3. Seja (X, R) um espaco de intervalo com uma distribui¢ao de probabilidade
7 sobre X, pr = Pr,(R) a probabilidade de um intervalo R € R, e pr a frequéncia



relativa de R com base em uma amostra S. Para ¢ € (0,1), S é uma e-aproximagdo para
(X,R)se|pr —pr| <€, VR € R.
Teorema 1 ([Har-Peled and Sharir 2011], Teo. 2.12). Seja (X, R) um espago de intervalo
com dimensdo VC dyc(R) < d, e seja m uma distribuicdo de probabilidade em X. Para
€,0 € (0,1), e uma amostra S de tamanho m extraida de 7, com probabilidade pelo
menos 1 — §, S é uma e-aproximacdo de (X, R) se m > =1 (d +In %) , onde ¢ é uma
constante positiva.

Por limitagdes de espago, as provas dos teoremas serdo omitidas neste trabalho e
apresentadas em sua respectiva versao estendida.

3. Estimativa Usando Amostragem de Ps
Esta se¢do apresenta a nossa estratégia para estimar as interse¢des normalizadas ip; (u, v).

3.1. Espaco de Intervalos e Resultados de Dimensao VC

A quantidade de amostras necessdrias ao algoritmo baseia-se no resultado do Teorema 1,
que, por sua vez, utiliza os valores da dimensao VC de um espacgo de intervalos definidos
para o problema. Abordaremos esse assunto a seguir.

Seja P3 0 espago amostral e Fp3(u,v) o evento em que uma amostra P; pertence
a intersecao das vizinhancas de u e v. Temos que

[N (u) N N(v)|
|P5]
onde a tultima equagdo segue da Definicdo 2. Assim, ao amostrar caminhos Ps, aproxi-
mamos ip3(u, v) estimando a probabilidade de Ep;(u,v). Seja (P3, Rp3) um espaco de

intervalos, onde R p3 é o conjunto de todos os eventos Epz(u,v) para u,v € V, ie.,
Rps = {Eps(u,v) | u,v € V}. O Teorema 2 limita a dimensao VC de (P35, R p3).

Pr(Eps(u,v)) =

= iP3 (U, U)a

Teorema 2. A dimensdo VC de (Ps, Rp3) é dyc(Rps) = 1se |Ps| > 1, e 0 caso contrdrio.

3.2. Algoritmo

Como discutido na secdo anterior, para calcular a intersecao da vizinhanca de u e v
ip3(u, v), podemos estimar a probabilidade do evento Ep3(u,v). Utilizamos a frequéncia
relativa de E'p3(u, v) para definir o nosso estimador ip3(u, v), i.e.,

ZP3 u, U E ]lEpg(uv

onde 1, (s;) € uma varidvel indicadora que assume 1 se s; € Eps(u,v) e 0 caso
contririo. Note que 7p3(u,v) é um estimador ndo enviesado para ip3(u,v), ou seja,
E[ip3(u, v)] = ip3(u, v). Tendo definido ips(u, v) e ip3(u, v) como a probabilidade de um
evento e sua frequéncia relativa, respectivamente, podemos construir uma e-aproximagao
(Defini¢ao 3) para (P3, R p3). Formalmente, nosso algoritmo satisfaz,

e

Ou seja, com probabilidade pelo menos 1 — §, o Algoritmo 1 garante que as estimativas
para todos os pares de vértices estejam dentro de um erro maximo de € em relacdo aos
seus valores reais.

 ips(u, v) —%P3(U,U)‘ < e) >1—0.



Algoritmo 1: INTERSECAOVIZINHANCAALEATORIZADO(G, €, 9)
Entrada: Grafo G = (V, E), precisio ¢, confianga 1 — ¢

A~

Saida : Estimativa ip3(u, v) para todo par u,v € V
m <— L% (1+ln%ﬂ
for i < 1 tomdo
{u,z,v} < AMOSTRARP3(G)
ip3(u, )  ip3(u,v) + L
return 7p3(u, v) para todos os pares u, v € V

Teorema 3. Dado um grafo G = (V, E), parametros € e 0, as estimativas ip3(u,v) retor-
ips(u,v) — ng(u,v)‘ < 6) >1—0.

nadas pelo Algoritmo 1 satisfazem Pr (‘v’u, velV,

O tempo de execucdo do Algoritmo 1 depende do tempo de execugao da fungao
AMOSTRARP3, que seré apresentado na Se¢ao 3.3.

3.3. Amostragem Uniforme de P;

Nesta secdo, descrevemos um método para amostrar uniformemente um FP; de um grafo
G. Para cada aresta e = {u, v} € E, definimos p. = “55+=2, onde d, e d, sio os graus
dos vértices u e v, respectivamente. A amostragem com pesos p. pode ser feita usando
o método Alias [Walker 1974] em tempo O(|E|) para pré-processar os dados do grafo, e

O(1) para fazer cada amostragem. O Algoritmo 2 descreve o processo.

Algoritmo 2: AMOSTRARP3(G)

Entrada: Grafo G = (V, E)
Saida : Um P;3; amostrado uniformemente de P3

1. Amostre uma aresta e = {u, 2} com probabilidade p..
2. Amostre um vértice v de N (u) U N (z) \ {u, x} uniformemente.
3. Retorne o caminho {u, z,v}.

Para definir os valores p. no Passo 1, € necessdrio saber |Ps;|. O Lema 4 fornece
um resultado util para esse proposito.
dy+dy—2
SR
O Teorema 5 mostra a corretude e o tempo de execucdo do Algoritmo 2. O tempo
de execugdo, em particular, é baseado no método Alias e no Lema 4.

Lema 4. O niimero total de P; no grafo G é dado por P3| = 3, 1cp

Teorema 5. O Algoritmo 2 é de tempo O(|E|) e amostra uniformemente um Pj de Ps.
Finalmente, usando os resultados apresentados, podemos enunciar o Teorema 6.

Teorema 6. O tempo de execugdo do Algoritmo 1 é O(|E).

4. Consideracoes Finais

Propomos um algoritmo que computa a intersecao normalizada entre todos os pares de
vértices com erro € e probabilidade 1 — §. Seu tempo de execugio é O(|E|), sendo mais
eficiente do que outros no mesmo cendrio. Ele utiliza amostragem de Ps, que acaba sendo
o gargalo do tempo de execucao, e métodos mais eficientes de amostragem, como MCMC
(Monte Carlo via Cadeias de Markov), podem ser explorados no futuro.
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