New upper bound for Gallai-Ramsey number of brooms

Matheus A. S. Pascoal ¹

¹Universidade Federal do Ceará (UFC) Fortaleza – CE – Brasil

matheusalvpascoal@alu.ufc.br

Abstract. Let m, l, and k be integers greater than 1. The broom graph with a handle of length l and m bristles is denoted by $B_{l,m}$. A Gallai coloring of a graph G is an edge coloring of G that does not have a triangle with edges of 3 distinct colors. The k-colored Gallai-Ramsey number of the graph G denoted by $GR_k(H)$ is the smallest natural number G such that every Gallai G coloring of the complete graph with G vertices contains a monochromatic copy of G denoted that proved in 2019 that, for G contains a monochromatic copy of G denoted that G denoted that

1. Introdução

Let $k \in \mathbb{N}$ and G be a finite simple graph. The k-colored Ramsey number of G, denoted by $R_k(G)$, is the smallest natural number m such that every k-coloring of the edges of K_m contains a monochromatic copy of G. The fact that $R_k(G)$ is well-defined is a theorem from [Ramsey 1930], which established a strong and active research area in Combinatorics, with applications in Information Theory, Geometry, Topology, among other fields (see [Rosta 2004]). The most important open case is when G is a clique. Recently, in [Campos et al. 2023], a substantial improvement in the upper bound was made, where it was proven that there exists $\epsilon > 0$ such that, for all large n, $R_2(K_n) \le (4-\epsilon)^n$. However, Ramsey numbers have already been studied for a vast number of other graphs (see the dynamic survey [Radziszowski 2012]).

Denote by $B_{l,m}$ the broom with m bristles and handle length l. It is known that: **Theorem 1.1.** [Erdős et al. 1982], [Yu and Li 2016]

$$R_2(B_{l,m}) = \begin{cases} m + l + \lceil l/2 \rceil - 1, & \text{if } l \ge 2m - 1; \\ 2(m + l) - 2\lceil l/2 \rceil - 1, & \text{if } 4 \le l \le 2m - 2. \end{cases}$$

Let H be a simple graph and σ an (edge) coloring of G. We say that σ contains a rainbow copy of H if there exists a copy of H in G where all edges have distinct colors. A Gallai coloring is an edge coloring of a complete graph such that there is no rainbow copy of a complete 3-vertex graph. A Gallai partition of G is a partition of V(G) into sets V_1, \ldots, V_p with $p \geq 2$ such that at most two colors of σ are used on the edges in $E(G) - (E(V_1) \cup \cdots \cup E(V_p))$, and only one color is used on the edges between any fixed pair V_i, V_j . In [Gyárfás and Simony 2004] and [Hall et al. 2014], it was shown that:

Theorem 1.2. Let σ be a Gallai coloring of the complete graph G with $|V(G)| \geq 2$. Then the following results hold: [Gyárfás and Simony 2004] There exists a Gallai partition of G. [Hall et al. 2014] Moreover, a minimal Gallai partition (i.e., where p is minimized) is such that, for each color i of σ appearing on edges between the parts, the subgraph of the reduced graph induced by i is connected.

Intersecting both topics above, the k-colored Gallai-Ramsey number of graphs, denoted by $GR_k(G)$, is the smallest natural number m such that every Gallai k-coloring of a complete graph with m vertices contains a monochromatic copy of G. Naturally, it follows that $GR_k(G) \leq R_k(G)$. In [Wu et al. 2019], it was shown that:

Theorem 1.3. [Wu et al. 2019] For a connected bipartite graph H with the size of the smallest part s, we have:

$$GR_k(H) \ge R_2(H) + (s-1)(k-2).$$

Combining the above with Lemma 1.1, it follows that:

Observation 1.4. Let m, l, k be integers, then

$$GR_k(B_{l,m}) \ge \begin{cases} m + l + \lceil l/2 \rceil - 1 + (k-2)(\lceil l/2 \rceil - 1), & \text{if } l \ge 2m - 1; \\ 2m + 2\lfloor l/2 \rfloor - 1 + (k-2)(\lceil l/2 \rceil - 1), & \text{if } 4 \le l \le 2m - 2. \end{cases}$$

Given a Gallai coloring σ of the complete graph G and a positive integer m, the number of colors whose maximum connected component (in the graph induced by the edges of that color) has size at least m is denoted by $q_{\sigma}(G,m)$. In [Zhang et al. 2022] it was shown that this quantity is related to the Gallai Ramsey number of cycles. Let C_n the cycle graph with n vertices.

Theorem 1.5. [Zhang et al. 2022] Let $m, k \geq 3$ and σ be a Gallai coloring of the complete graph G. If

$$|G| \ge q_{\sigma}(G, m)(m-1) + m + 1$$

then σ contains a copy of C_{2m} . In particular, $GR_k(C_{2m}) \leq (k-2)(m-1) + 3m-1$.

Finally, in [Hamlin 2019] it was shown that:

Theorem 1.6. [Hamlin 2019] Let k, l, and m be integers such that $m \ge 7l/2 + 3$, then

$$GR_k(B_{l,m}) \le (k-2)(\lceil l/2 \rceil - 1) + 3m - \lceil 3l/2 \rceil - 2.$$

Moreover, it was conjectured that:

Conjecture 1.7. [Hamlin 2019] Let m, l, k be integers greater than 1, then

$$GR_k(B_{l,m}) = \begin{cases} m+l+\lceil l/2 \rceil - 1 + (k-2)(\lceil l/2 \rceil - 1), & \text{if } l \ge 2m-1; \\ 2m+2\lfloor l/2 \rfloor - 1 + (k-2)(\lceil l/2 \rceil - 1), & \text{if } 4 \le l \le 2m-2. \end{cases}$$

Here, we consider the case l > 2m and prove that:

Theorem 1.8. Let $m \ge 2$, $l \ge \max\{2m, 5\}$, and σ be a Gallai coloring of the complete graph G. If

$$|G| \ge max\{(q_{\sigma}(G, m + \lfloor l/2 \rfloor) - 2)(\lceil l/2 \rceil - 1), 0\} + 3m + 3\lceil l/2 \rceil - 2$$

then σ contains a monochromatic copy of $B_{l,m}$. In particular, for any positive integer k > 1, $GR_k(B_{l,m}) \leq 3m + 3\lceil l/2 \rceil - 2 + (k-2)(\lceil l/2 \rceil - 1)$.

2. Results

Below is a classical result on cycles in bipartite graphs, which will be used at the end of the proof of Theorem 1.8.

Theorem 2.1. [Jackson 1981] Let G be a bipartite graph with parts A and D such that $|N(v)| \ge t$ for every $v \in A$ and $t \le |D| \le 2t - 2$. Then, G contains as a subgraph all cycles with 2m vertices for $1 \le m \le \min\{|A|, t\}$.

Proof Sketch of Theorem 1.8. First, observe that if σ has only one color the hypothesis on |G| yields the desired result. With two colors, it follows immediately from Theorem 1.1. So we may assume there are at least three colors. Assume, by contradiction, that there exist a Gallai coloring of a complete graph that satisfies the hypotheses of the theorem but does not contain a monochromatic copy of $B_{l,m}$. Among these colorings, let σ a Gallai coloring of a complete graph G such that $q_{\sigma}(G, m + \lfloor l/2 \rfloor)$ is minimal (by Theorem 1.2, he is at least 1). Now define $q = q_{\sigma}(G, m + \lfloor l/2 \rfloor)$. A color i in the coloring σ is called special if the subgraph of G induced by edges of color i has its largest connected component of size at least $m + \lfloor l/2 \rfloor$ (i.e., it contributes to the count of q). Assume that the special colors are the first q colors. For a color i in σ , call a set of vertices A i-complete with B if all edges with endpoints in both sets have color i. Now consider subsets X_1, X_2, \ldots, X_q of V(G) and define $X = \bigcup_{i=1}^q X_i$ satisfying the following properties: for every $i \in [q] X_i$ is i-complete with V(G) - X, and, respecting $|V(G) - X| \ge m + \lfloor l/2 \rfloor$, |X| is maximized. The observation below follows immediately from the definition of these sets.

Observation 2.2. For each
$$i \in [q] |X_i| \leq \lceil l/2 \rceil - 1$$

Let σ' be the coloring induced by σ on the graph G-X. Clearly σ' is a k-Gallai coloring of G-X without monochromatic copies of $B_{l,m}$. By Theorem 1.2, let $\mathcal P$ be a minimum Gallai partition of G-X with respect to σ' , consisting of p elements, denoted as $V_1,V_2,...,V_p$. Without loss of generality, assume that $|V_1| \leq |V_2| \leq ... \leq |V_p|$. Since $|G-X| \geq m + \lfloor l/2 \rfloor$ the Theorem 1.2 guarantees that all colors appearing on edges between the parts of $\mathcal P$ are special. Again, by Theorem 1.2, without loss of generality assume that the only colors that can appear on the edges between these parts are 1 or 2. The observation below follows from this and from maximality of X.

Observation 2.3.
$$|V_p| \le m + |l/2| - 1$$

Now, let $\mathcal C$ be the set of colors that appear on the edges between the parts of $\mathcal P$ and let $\mathcal D=[q]-\mathcal C$. Then observe that

Claim 2.4. If $i \in \mathcal{D}$ then $X_i \neq \emptyset$. In particular, $q \leq 2$.

Proof. On the one hand, let $i \in \mathcal{D}$. Let $k, j \in \mathcal{D}$ be distinct colors. Since σ is a Gallai coloring and the color of the edges between X_t and G - X is t for every $t \in [q]$ it follows that all edges between X_j and X_k are either of color j or color k. Now, assume for contradiction that $X_i = \emptyset$. Then every edge of color i has its endpoints contained either in $\bigcup_{j \in [q] - i} E(G[X_j])$ or $\bigcup_{j \in [p]} E(G[V_j])$ (with E(G[V]) denoting the set of edges of G with ends in V if $V \subset V(G)$). From Observations 2.2 and 2.3, it follows that i is not a special color, which is a contradiction that proving the initial claim. With this in mind, assume for contradiction that $q \geq 3$. Since $|\mathcal{C}| \leq 2$ then $q \in \mathcal{D}$. Given this let σ^* be the restriction of σ to $G - X_q$. From the previous part it follows that $q_{\sigma^*}(G, m + \lfloor l/2 \rfloor) \leq q - 1$. Furthermore let $j \in [q-1]$ be a special color with respect to σ . At first glance, if $j \in \mathcal{C}$, then j is still

special with respect to σ^* , because $X_j \cap G - X = \emptyset$. Moreover, if $j \in \mathcal{D} - \{q\}$ then $X_j \subset G - X_q$. From the first part $X_j \neq \emptyset$ so j is still special with respect to σ^* . Given this it follows that $q_{\sigma^*}(G, m + \lfloor l/2 \rfloor) = q - 1$, with σ^* being a Gallai coloring that does not contain a monochromatic copy of $B_{l,m}$. Finally notice that, by Claim 2.2,

$$|G - X_q| \ge |G| - (\lceil l/2 \rceil - 1) = (q - 2)(\lceil l/2 \rceil - 1) + 3m + 3\lceil l/2 \rceil - 2 - (\lceil l/2 \rceil - 1) = (q - 3)(\lceil l/2 \rceil - 1) + 3m + 3\lceil l/2 \rceil - 2 = (q_{\sigma^*}(G - X_i, m + \lfloor l/2 \rfloor) - 2)(\lceil l/2 \rceil - 1) + 3m + 3\lceil l/2 \rceil - 2.$$

Thus, by $q^* \geq 2$ and the minimality of q, it follows that σ^* contains a copy of $B_{l,m}$, a contradiction.

From this point on let for each $i \in \{1, 2, 3\}$ and $v \in V(G)$, $N_i(v)$ denote the set of neighbors of v in G where the edge with v has color i. Finally observe that

Claim 2.5.
$$|V_p| \leq \lceil l/2 \rceil - 1$$
 and $min\{|X_1|, |X_2|\} = 0$.

Proof. For the first part, assume for contradiction that the opposite happens, split G into three parts: V_p , A_1 and A_2 where A_i is the set of vertices of $G-V_p$ that connect to V_p by edges of color i. From here using Observation 2.3 and the pigeonhole principle on A_1 and A_2 , it is easy to see that $max\{|A_1|, |A_2|\} \leq \lceil l/2 \rceil + m - 1$, but this implies that $|G| = |V_p| + |A_1| + |A_2| < 3\lceil l/2 \rceil + 3m - 3$ a contradiction. Now assume both are nonempty for contradiction. Then it follows that colors 1 and 2 are the only special colors. By Theorem 1.5, there exists a monochromatic copy of $C_{2\lceil l/2 \rceil}$, C in σ . Since this graph is connected it follows that this copy can only be of color 1 or 2. Without loss of generality, assume it is of color 1. That said i claim that $X_1 = \emptyset$. Let $v \in X_1$. If $v \in V(C)$ then by Observation 2.2 it is easy to see that $|N_1(v) - V(C)| \geq 3m - 1$ and therefore that there exists a copy of $B_{l,m}$ in σ . Otherwise again by Observation 2.2 and the size of the cycle $N_1(v) \cap V(C) \neq \emptyset$. Moreover $|G - V(C)| \geq 3m + \lceil l/2 \rceil - 2$ implies that thus $|N_1(v) - V(C)| \geq 3m - 1$. In both cases a copy of $B_{l,m}$ is found, a contradiction. \square

Given the statement above let ρ be a 3-coloring of G such that the edges of $\bigcup_{j\in[q]-i}E(G[X_j])$ and of $\bigcup_{j\in[p]}E(G[V_j])$ have color 3 and preserve the coloring σ on the remaining edges. Note that this coloring is clearly a Gallai coloring and if there exists a monochromatic copy of $B_{l,m}$, it would also exist in σ . Moreover by the same reasoning as before $q=q_{\rho}(G,m+\lceil l/2\rceil)=q_{\rho}(G,\lceil l/2\rceil)$ and $v,w\in V(G)$ are such that $w\in N_3(v)$, then $N_i(v)=N_i(w)$ for all $i\in\{1,2,3\}$. Again, by Theorem 1.5, there exists a monochromatic copy of $C_{2\lceil l/2\rceil}$ in ρ . Let C and A=V(C) be this copy and set D=V(G)-A, so $|D|\geq 3m+\lceil l/2\rceil-2$. Fix $v\in A$, then it follows that $|N_1(v)\cap D|\leq m-1$. Also, observe that, by the choice of ρ , every vertex in $N_1(v)$ is 1-complete with $N_3(v)\cap D$, so $|N_3(v)\cap D|\leq m-1$. Consequently, $|N_2(v)\cap D|\geq |D|-(2m-2)\geq m+\lceil l/2\rceil$. Furthermore note that

$$2(|D| - 2m + 2) - 2 = 2|D| - 4m + 2 \ge |D| \Leftrightarrow |D| \ge 4m - 2.$$

Since $|D| \geq 3m + \lceil l/2 \rceil - 2 \geq 4m - 2$, because $\lceil l/2 \rceil \geq m$, it follows by Theorem 2.1, applied in A and D that there exists a monochromatic copy of $B_{l,m}$ of color 2 in ρ , which, as observed earlier, is a contradiction. This complete the proof of the first part of theorem. In particular, since $q_{\sigma}(G, m + \lfloor l/2 \rfloor)$ is at most the amount of colours for all Gallai coloring σ of complete graph G, the Theorem 1.8 was proved.

Referências

- Campos, M., Griffiths, S., Morris, R., and Sahasrabudhe, J. (2023). An exponential improvement for diagonal Ramsey.
- Erdős, P., Faudree, R., Schelp, R., and Rousseau, C. (1982). Ramsey numbers of brooms. *Proceedings of the Thirteenth Southeastern Conference on Combinatorics, Graph Theory and Computing*.
- Gyárfás, A. and Simony, G. (2004). Edge colorings of complete graphs without tricolored triangles. *Journal of Graph Theory*, 46:211–216.
- Hall, M., Magnant, C., Ozeki, K., and Tsugaki, M. (2014). Improved upper bounds for Gallai–Ramsey numbers of paths and cycles. *Journal of Graph Theory*, 75(1):59–74.
- Hamlin, B. J. (2019). Gallai-Ramsey number for classes of brooms. Master's thesis, Georgia Southern University.
- Jackson, B. (1981). Cycles in bipartite graphs. *Journal of Combinatorial Theory*, 30:332–342.
- Radziszowski, S. (2012). Small Ramsey numbers. *The Electronic Journal of Combinatorics*, pages DS1–Jan.
- Ramsey, F. P. (1930). On a problem of formal logic. *Proceedings of the London Mathematical Society*, s2-30(1):264–286.
- Rosta, V. (2004). Ramsey Theory applications. *The Electronic Journal of Combinatorics*, 1000:DS13–Dec.
- Wu, H., Magnant, C., Salehi Nowbandegani, P., and Xia, S. (2019). All partitions have small parts Gallai-Ramsey numbers of bipartite graphs. *Discrete Applied Mathematics*, 254:196–203.
- Yu, P. and Li, Y. (2016). All Ramsey numbers for brooms in graphs. *The Electronic Journal of Combinatorics*, 23:P3–29.
- Zhang, F., Song, Z.-X., and Chen, Y. (2022). Gallai-ramsey number of even cycles with chords. *Discrete Mathematics*, 345(3):112738.