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Abstract. In the Dominating Set Problem (DS), given a graph G, the goal is to
find a subset D ⊆ V of minimum size such that N [D] = V . We consider the β-
Fair DS Problem (β-FDS), a variant of DS where V is the disjoint union of red
and blue vertices, each vertex must be assigned to a dominating vertex in D, and
the ratio between the number of vertices of each color assigned to an element
of D must be at least β. This problem has applications in fair clustering, which
aims to avoid group underrepresentation that is typically present in solutions
produced by standard clustering algorithms. We show that β-FDS is W [1]-
hard when parameterized by k + tw for each β > 0, where k is the size of the
solution, and tw is the treewidth of the graph. For the special case where β = 1,
we present an O(n∆) algorithm for trees and an O(3tw∆2tw+2n) algorithm for
general graphs, where ∆ is the maximum degree of the graph.

1. Introdução
No problema do k-center, dado um conjunto de pontos V em algum espaço

métrico e um inteiro positivo k, o objetivo é encontrar k pontos, chamados de centros,
de modo a minimizar a maior distância entre um ponto e o centro mais próximo. No
problema dual, ao invés do número de centros k, a entrada inclui um valor real r e o
objetivo é encontrar um menor conjunto de centros de forma que a distância entre cada
ponto e o centro mais próximo seja no máximo r. A versão de decisão do problema dual
é equivalente ao Problema do Conjunto Dominante (DS) no grafo que tem conjunto de
vértices V e uma aresta entre cada par de pontos que estão a uma distância menor ou igual
a r [Hochbaum and Shmoys 1985]. Em DS, dado um grafo G = (V,E) e um inteiro k, o
objetivo é decidir se há um subconjunto de vértices D com |D| ≤ k tal que N [D] = V ,
onde N [D] é o conjunto formado por D e vizinhos de D.

O k-center e outros problemas de clusterização clássicos não impõem
restrições sobre tamanho ou distribuição dos pontos de um cluster, o que
pode levar a subrepresentação ou viés contra grupos de elementos em certas
aplicações [Chierichetti et al. 2017]. Isso motiva o estudo de versões justas dos proble-
mas, em que cada cluster deve conter um número balanceado de pontos de cada grupo.
Enquanto a versão justa do k-center já tem recebido relativa atenção na literatura, uma
versão justa de DS ainda não foi estudada. Neste trabalho, introduzimos o problema do
Conjunto Dominante Justo (β-FDS), que é uma versão justa de DS em que cada vértice
está associado a uma cor (vermelho ou azul) e, para cada cluster, a razão entre o número
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de vértices da cor menos representada e o número de vértices da cor mais representada
deve ser maior ou igual a β.

Neste trabalho, demonstramos que β-FDS é W [1]-difı́cil quando parametrizado
por k + tw para cada β > 0, em que k é o tamanho da solução e tw é a largura arbórea do
grafo. Para o caso especial em que β = 1, apresentamos um algoritmo de tempo O(n∆)
para árvores e um algoritmo de tempo O(3tw∆2tw+2n) para grafos gerais, em que ∆ é o
grau máximo do grafo.

2. Definições
Dado um grafo G = (V,E) e uma bipartição dos vértices em duas cores R e B,

i.e., V = R ∪B, o balanceamento de um conjunto não vazio S ⊆ V é definido como

balance(S) = min { |S∩R|, |S∩B| }
max { |S∩R|, |S∩B| } .

O balanceamento captura a representação mı́nima de uma cor em um cluster e, em parti-
cular, se o balanceamento for 1, então cada cor está igualmente representada.

Dizemos que um conjunto D ⊆ V é conjunto dominante β-justo se existir um
mapeamento α : V → D tal que balance(α−1(d)) ≥ β para todo d ∈ D, i.e., o balancea-
mento do cluster associado a d é pelo menos β. Para alguma constante β, com 0 < β ≤ 1,
o problema do Conjunto Dominante β-Justo (β-Fair Dominating Set, β-FDS) consiste
em, dado um grafo G = (V,E), cujos vértices têm cores R ou B, e um inteiro k, decidir
se existe conjunto dominante β-justo de tamanho no máximo k.

Note que pode não existir nenhum conjunto dominante β-justo independente-
mente do tamanho, por exemplo, se β = 1 e o número de vértices de cada cor não for
o mesmo. Observamos que, pelo menos para β = 1, é possı́vel verificar a existência
de algum conjunto dominante β-justo em tempo polinomial (Teorema 2). No algo-
ritmo da Seção 4, iremos supor que existe um conjunto dominante 1-justo e recebemos
também uma decomposição em árvore de largura mı́nima do grafo de entrada. Indicamos
[Cygan et al. 2015] para as definições completas.

3. W[1]-dificuldade
Para estudar a dificuldade de β-FDS, iremos descrever uma redução do Problema

do Conjunto Dominante Capacitado (CDS). Dado um grafo G = (V,E) e uma função de
capacidade c : V → N, um subconjunto de vértices D ⊆ V é um conjunto dominante ca-
pacitado se existir um mapeamento α : V → D tal que |α−1(d)| ≤ c(d) para todo d ∈ D.
O problema CDS consiste em, dado um grafo, capacidades nos vértices e um inteiro k,
decidir se existe um conjunto dominante capacitado de tamanho no máximo k.

Sabemos que CDS é W [1]-difı́cil quando parametrizado por k + tw, em que tw
é a largura arbórea do grafo em questão e k é o tamanho da solução [Dom et al. 2008]*.
Em seguida, iremos demonstrar que β-FDS também é W [1]-difı́cil para cada β racional
via uma redução parametrizada.

*Em [Dom et al. 2008], um conjunto dominante capacitado é definido em termos de um mapeamento
α : (V \D) → D, mas é conveniente considerar um mapeamento α : V → D no contexto de particiona-
mento justo e é possı́vel demonstrar que ambas as variantes são W [1]-difı́ceis modificando ligeiramente a
redução apresentada no artigo original.
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Figura 1. Redução de CDS para β-FDS.

Teorema 1. Para cada β racional tal que 0 < β ≤ 1, β-FDS é W [1]-difı́cil quando
parametrizado por k + tw, sendo tw a largura arbórea do grafo de entrada e k o tamanho
da solução.

Ideia da demonstração. Como β é racional entre 0 e 1, podemos escrevê-lo como uma
fração irredutı́vel p

q
, onde p e q são constantes inteiras positivas e p ≤ q. Dada uma

instância (G, c, k) de CDS, em que G = (V,E) é um grafo de largura arbórea tw, vamos
construir uma instância (G′, R,B, k′) de β-FDS em que G′ = (V ′, E ′) é um grafo com
largura arbórea no máximo tw′ = q · tw + 1 e k′ = k + 1 (veja Figura 1).

Para cada vértice v ∈ V , crie uma clique com q vértices em R (vermelhos) de-
notados por v1, v2, . . . , vq. Além disso, para cada aresta (u, v) ∈ E, adicione uma aresta
entre ui e vj para todo 1 ≤ i, j ≤ q. Observe que, nesse momento, os vértices de cada
clique são vizinhos gêmeos e G′ é igual ao produto entre G e Kq.

Agora, para cada vértice v ∈ V , crie p · c(v) vértices em B (azuis) denotados por
v′1, v

′
2, . . . , v

′
p·c(v) e ligue cada vértice v′i ao vértice v1, que é a primeira cópia do vértice v

na clique. Defina C =
∑

v∈V c(v) e observe que o número de vértices azuis criados é p·C.

Crie um vértice x vermelho e ligue esse vértice a cada um dos vértices azuis, i.e.,
cada vértice v′i para v ∈ V e 1 ≤ i ≤ p · c(v). Finalmente, crie q · (C − |V |) − 1
vértices vermelhos, denotados por y1, y2, . . . , yq·(C−|V |)−1, e ligue cada um deles a x. Isso
completa a construção de G′.

Para completar a demonstração, é possı́vel mostrar que cada solução para a
instância de CDS corresponde a uma solução de β-FDS e vice-versa. A observação prin-
cipal é que o número de vértices vermelhos é exatamente q · C enquanto o número de
vértices azuis é exatamente p · C. Isso implica que, para um conjunto dominante β-justo
D com mapeamento α, temos balance(α−1(d)) = β para cada vértice d ∈ D. Segue que
cada cluster tem um múltiplo de q vértices vermelhos e um múltiplo de p vértices azuis.
Além disso, é possı́vel verificar que existe uma solução em que o número de vértices de
G associados a cada d é no máximo c(d).



4. Algoritmos para β = 1

Nesta seção, lidamos com o caso particular em que β = 1. Neste caso, é conve-
niente representar a cor de um vértice por meio de uma coloração χ : V → {R,B} e
considerar uma função f com f(R) = 1 e f(B) = −1, de forma que um conjunto S terá
balance(S) = 1 se e somente se

∑
v∈S f(χ(v)) = 0.

Essa definição tem algumas propriedades interessantes, que permitem verificar se
um conjunto é balanceado sem necessariamente armazenar quantos elementos de cada cor
são dominados por cada vértice. Em seguida, definimos n = |V | e m = |E|.

Teorema 2. Existe algoritmo que decide se um grafo G = (V,E) com coloração
χ : V → {R,B} admite conjunto dominante 1-justo em tempo O(n5/2 +m).

Este teorema mostra que a dificuldade do problema não está apenas em achar
um conjunto que satisfaça as condições de justiça, mas sim em garantir que esse conjunto
tenha tamanho menor ou igual a k. Em seguida, mostramos que o problema é FPT quando
parametrizado por tw +∆, sendo ∆ o maior grau entre os vértices do grafo.

Teorema 3. Existe algoritmo que resolve 1-FDS tempo O(3tw∆2tw+2n) para grafos de
grau no máximo ∆ quando equipado com uma decomposição em árvore de largura tw.

Para árvores, obtemos um algoritmo especializado, também baseado em
programação dinâmica.

Teorema 4. Existe algoritmo que resolve 1-FDS para árvores em tempo O(n∆).

O algoritmo considera, para cada vértice v, um subproblema de encontrar um
melhor cluster α−1(v) tal que

∑
u∈α−1(v) f(χ(u)) = 0. Isso pode ser feito resolvendo-se

uma instância do Problema da Mochila 0-1 em tempo O(δ2(v)), em que δ(v) é o grau de v.
Assim, o problema completo pode ser resolvido em tempo O(

∑
v∈V δ2(v)) = O(n∆).

Também, é possı́vel obter um algoritmo aleatorizado baseado no Teorema 4,
resolvendo-se cada subproblema em tempo O(δ3/2(v)) com alta probabilidade de acerto,
o que leva a uma complexidade de O(n

√
∆) no total. Para isso, embaralhamos a or-

dem das arestas da árvore, de forma que as somas parciais de f(χ(u)) para um cluster
α−1(v) ótimo se assemelhe às distâncias percorridas por um passeio aleatório de δ(v)
passos. A esperança do maior valor absoluto de um passeio aleatório de k passos é
Θ(

√
k) [Palacios 2008], então podemos restringir cada instância do problema da mo-

chila correspondente para que considere apenas valores entre −c
√
∆ e c

√
∆ para alguma

constante c. Não conseguimos cotas satisfatórias para a probabilidade de acerto até o
momento, mas em experimentos para c = 2 obtivemos chance de erro menor do que 1%.
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