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Abstract. This work presents some outcomes of a theoretical investigation of
incompressible high-order networks defined by a generalized graph represen-
tation. We study some of their network topological properties and how these
may be related to real-world complex networks. We show that these networks
have very short diameter, high k-connectivity, degrees of the order of half of the
network size within a strong-asymptotically dominated standard deviation, and
rigidity with respect to automorphisms. In addition, we demonstrate that incom-
pressible dynamic (or dynamic multilayered) networks have transtemporal (or
crosslayer) edges and, thus, a snapshot-like representation of dynamic networks
is inaccurate for capturing the presence of such edges that compose underlying
structures of some real-world networks.

1. Introduction

The general scope of this paper is to study (plain) algorithmically random high-order
networks. In a general sense, a high-order network is any network that has additional
representational structures. For example, this is the case of dynamic (i.e., time-varying)
networks, multilayer networks, and dynamic multilayer networks [4, 5]. Thus, as the
interest and pervasiveness of complex network modelling and network analysis increase,
the importance of accurate representations of such networks into new extensions of graph-
theoretical abstractions has become of increasing importance.

Within the theoretical framework of algorithmic information theory, complex net-
works theory, and graph theory, we study incompressibility (i.e., algorithmic randomness)
and computably irreducible information content (i.e., plain or prefix algorithmic comple-
xity) in generalized graph representations. In particular, we are grounding our formaliza-
tions, methods, and results on [3, 6]. Such an approach to network complexity, lossless
compression, and random graphs has identified useful tools to find, estimate, or measure
underlying topological structures or properties, e.g., degree distribution, k-connectivity,
diameter, and symmetries [6]. Moreover, it is also related to more traditional approaches
from statistical (entropy-like) information theory [6]. For example, from the classical
noiseless coding theorem [6], we know that, for large enough n = ∣V(G)∣, every recursi-
vely labeled random graph G on n vertices and edge probability p = 1/2 in the classical
model G(n, p) is expected to be incompressible (i.e., algorithmically random). However,
only algorithmic information theory gives us tools for studying incompressibility of fixed
individual graphs that are not generated or defined by stochastic processes [6]. In this
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way, this work derives from previous works on topological properties of incompressible
graphs obtained from an algorithmic complexity (or algorithmic randomness) analysis of
recursively labeled graphs. Thus, these methods differ from the traditional methods in
random graphs theory, such as the probabilistic method.

In the present work, we apply the results on labeling and algorithmic random-
ness introduced in [1], which extends those in [3] to MultiAspect Graphs (MAGs) [4].
MAGs are formal representations of dyadic (or 2-place) relations between two arbitrary
n-ary tuples and have shown fruitful representational properties to network modelling
and analysis of high-order networks [4, 5]. More formally, G = (A ,E ) denotes a MAG,
where E is the set of existing composite edges (which are ordered 2p-tuples) between two
arbitrary composite vertices (which are ordered p-tuples) of G . Each aspect σ ∈ A is a
finite set, and the number of aspects p = ∣A ∣ is called the order of G . Thus, in the present
work, we are assuming dynamic networks, multilayered networks, or dynamic multilaye-
red networks as special cases of MAGs [4]. To tackle these problems in the present paper,
we apply a theoretical approach by presenting definitions and theorems.

2. From some topological properties of incompressible high-order networks
to transtemporal and crosslayer edges

As defined in [4], a simple time-varying graph (TVG) is an undirected TVG without self-
loops in the same way that a simple MAG (or graph) is an undirected MAG (or graph)
without self-loops. From [3], the randomness deficiency measures how the recursively
labeled MAG (or graph)1 diverges from being plain algorithmically random given ∣V(Gc)∣
such that

C (E (Gc) ∣ ∣V(Gc)∣) ≥ (∣V(Gc)∣
2

) − δ(∣V(Gc)∣)

holds and, in this case, we say Gc is δ(∣V(Gc)∣)-C-random. Note that: C(y∣x) denotes the
plain algorithmic complexity of y given x; Gc = (A ,E ) denotes an arbitrary simple MAG;
V(Gc) ∶= ⨉∣A ∣i=1 A (G )[i] is the set of all possible composite vertices of Gc; A is a class
(or list) of sets A (G )[i] such that each i, where 1 ≤ i ≤ ∣A ∣, is an aspect; and δ(∣V(Gc)∣)
is the randomness deficiency of Gc. By convention, we can assume V(G ) = A (G )[1] as
the set of vertices of the MAG, T(G ) = A (G )[2] as the set of time instants, and further
sets A (G )[i], i ≥ 3 as a set of layers (of type i).

Since a TVG Gt = (V,E ,T) is a second order MAG [4], where V is the set of
vertices, T is the set of time instants, and E ⊆ V×T×V×T is the set of (composite) edges,
it is immediate to show in Corollary 2.1 that the previously studied case for simple MAGs
with arbitrary randomness deficiency δ(∣V(Gc)∣) in [1] also applies to simple TVGs. To
this end, note that in [1], since the order of the simple MAG is arbitrary, there is a recur-
sively labeled infinite family of simple TVGs that satisfy this with a chosen randomness
deficiency δ(∣V(Gt)∣) =O(log2(∣V(Gt)∣)). Thus, from Theorem 5.1 and Corollary 5.1.1
in [1] we have that:
Corollary 2.1. Let FGt be a recursively labeled infinite family FGt ≠ ∅ of simple TVGs
Gt that are O(log2(∣V(Gt)∣))-C-random. Then, the following hold for large enough
Gt ∈ FGt , where V(Gt) = V(Gt) ×T(Gt):

1 Once a graph is a first-order MAG.



1. The degree d(v) of a composite vertex v ∈ V(Gt) in a MAG Gt ∈ FGt satisfies

∣d(v) − (∣V(Gt)∣ − 1

2
)∣ =O (

√
∣V(Gt)∣ (O(log2(∣V(Gt)∣)))) .

2. Gt has ∣V(Gt)∣

4 + o(∣V(Gt)∣) disjoint paths of length 2 between each pair of com-
posite vertices u,v ∈ V(Gt).

3. Gt has (composite) diameter 2.
4. Gt is rigid under permutations of composite vertices.

In fact, this Corollary 2.1 can be rewritten for arbitrary O(log2(∣V(Gc)∣))-C-
random simple MAGs Gc instead of simple O(log2(∣V(Gt)∣))-C-random TVGs Gt and,
therefore, it also holds for other high-order networks, e.g., dynamic multilayer networks.

Now, let a transtemporal edge be a composite edge e = (u, ti, v, tj) ∈ E (Gt) with
j ≠ i ± 1 and j ≠ i. Thus, in Theorem 2.1, the short (composite) diameter and high k-
connectivity (as defined in [3]) of a O(log2(∣V(Gt)∣))-C-random simple TVG ensures the
existence of transtemporal edges in Gt:
Theorem 2.1. Let Gt be a simple TVG satisfying Corollary 2.1 with ∣T(Gt)∣ > 8. Then,
for every pair of vertices u, v ∈ V(Gt) and time instants ti, tj ∈ T(Gt) with j > i+2, there
is a transtemporal edge e ∈ E (Gt).

Proof. The case in which (u, ti, v, tj) ∈ E (Gt) immediately satisfies the definition of
transtemporal edge. From Corollary 2.1, the composite diameter is 2. Therefore, it
only remains to investigate the case in which there are h ∈ V(Gt) and tz ∈ T(Gt)
such that (u, ti, h, tz) ∈ E (Gt) and (h, tz, v, tj) ∈ E (Gt). From Corollary 2.1, we have
that, for every pair of vertices u, v ∈ V(Gt) and time instants ti, tj ∈ T(Gt), there are
∣V(Gt)∣

4 + o(∣V(Gt)∣) disjoint paths of length 2 between (u, ti) and (v, tj). But, since
∣T(Gt)∣ > 8, the number of possible distinct composite vertices (h, tz) with tz = ti or
tz = tj will be always smaller than ∣V(Gt)∣

4 and, thus, strictly smaller than the number of
distinct composite vertices connecting (u, ti) and (v, tj). Therefore, there will be at least
one composite vertex (h, tz) with i + 1 < z, z + 1 < j, z < i, or j < z. Then, in any case,
(u, ti, h, tz) ∈ E (Gt) or (h, tz, v, tj) ∈ E (Gt) will be a transtemporal edge.

In fact, Theorem 2.1 can easily be generalized to multilayer (undirected) networks
or dynamic multilayered (undirected) networks, so that Theorem 2.1 will become a co-
rollary. To this end, it suffices to extend Corollary 2.1 to simple MAGs with order p ≥ 2.
First, the multilayer case in which there is just one additional aspect, besides the set of
vertices, is totally analogous. Secondly, for the dynamic multilayer (or many-type multi-
layer) case in which the simple MAGs have order p > 2, we will have that the first aspect
still is the set of vertices, the second aspect still is the set T(Gc) = A (Gc)[2] of time
instants (or the first layer type L2(Gc) = A (Gc)[2]), and the further aspects are any other
layer type Lk(Gc) = A (Gc)[k], where k > 2. Analogously to the temporal case, let a
crosslayer edge be a composite edge e = (u, . . . , xhi, . . . , xps, v, . . . , xhj . . . , xps′) ∈ E (Gc)
in which j ≠ i± 1 and j ≠ i, where 2 ≤ h ≤ p and xhi, xhj ∈ A (Gc)[h]. Thus, Theorem 2.1
can be rewritten as:



Theorem 2.2. Let Gc be a O(log2(∣V(Gc)∣))-C-random simple MAG with order p ≥ 2
that belongs to a recursively labeled infinite family FGc of simple MAGs Gc such that

∣A (Gc)[k]∣ =
∣V(Gc)∣

∣V(Gc)∣ ⨉
h≥2, h≠k

∣A (Gc)[h]∣
> 8

Then, for every pair of composite vertices (u, . . . , xki, . . . , xps) and (v, . . . , xkj . . . , xps′)
with j > i + 2, where 2 ≤ k ≤ p and xki, xkj ∈ A (Gc)[k], there is a crosslayer edge e ∈
E (Gc), if Lk(Gc) = A (Gc)[k], or a transtemporal edge e ∈ E (Gc), if T(Gc) = A (Gc)[k].

3. Conclusions
In this work, we have studied some topological properties of plain algorithmically random
high-order networks that can be formally represented by MultiAspect Graphs (MAGs), in
particular, dynamic networks, multilayer networks, and dynamic multilayer networks. We
have shown that these networks have very short diameter, high k-connectivity, degrees of
the order of half of the network size within a strong-asymptotically dominated standard
deviation, and rigidity under permutations of composite vertices. Therefore, these theo-
retical findings directly relate lossless compressibility of high-order networks with their
network topological properties.

Then, we have demonstrated the presence of transtemporal or crosslayer edges
(i.e., edges linking vertices at non-adjacent time instants or layers) in incompressible dy-
namic, multilayer, or dynamic multilayer networks. Note that a snapshot-like representa-
tion of dynamic networks is not accurate enough to capture the presence of such edges in
the underlying structures of some real-world networks. Thus, with the purpose of brin-
ging algorithmic randomness to the context of high-order networks or complex networks,
our theoretical results suggest that estimating or analyzing both the incompressibility and
the network topological properties of real-world networks cannot be taken into a universal
approach, such as the incompressibility of arbitrary MAGs.
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