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Abstract. The Red-Blue Facility Location problem is a generalization of Facility

Location where clients may have two types of demands and each open facility

must provide for one of the types of demands. We present preliminary results for

two special cases of this problem.

1. Introduction

The Facility Location problem is a central topic in combinatorial optimization. It formal-

izes the problem of deciding where to place facilities on a map to better serve the clients,

minimizing the cost of opening the facilities and the distance from clients to the closest

open facility. The general form of the problem is as follows:

Problem 1. Facility Location

Instance: a set F of facilities and a set C of clients; a function d : C × F → Q+; for

every f ∈ F , an opening cost kf ∈ Q+ and, for every c ∈ C, a demand kc ∈ Q+.

Solution: a set O ⊆ F that minimizes
∑

f∈O kf +
∑

c∈C kc minf∈O d(c, f).

The function d, representing the distances, is not necessarily metric. An O(lg n)-
approximation is known for this general version, where n = |C| [Hochbaum 1982].

For the metric case, in which d satisfies the triangle inequality, the best known ap-

proximation ratio for the problem is 1.488 [Li 2013], and there is an inapproximabil-

ity result that says that, if there is an approximation with ratio better than 1.463, then

NP ⊆ DTime(nlg lgn) [Guha and Khuller 1999].

A more general version of the problem considers that clients have different

types of demands, and each open facility serves a specific type of demand. In this

more general setup, one has to decide not only where to open facilities, but also what

type of demand each open facility will serve [Baev et al. 2008]. The case that allows

for two types of demands was called in the literature the Red-Blue Facility Location

(RBFL). The k-medians problem with more than one type of demand has also been ad-

dressed [Hajiaghayi et al. 2010, Swamy 2016].

There is a 4-approximation algorithm for the Metric RBFL under the assumption

that there is no opening cost for the facilities [Arora et al. 2014]. This algorithm uses

linear programming and rounding. While searching for a better approximation for this

version of the problem, we managed to design a simple 2-approximation for the partic-

ular case in which the blue and red demands are the same for each client. The problem

remains NP-hard in this case, as we show at the end of Section 2, after presenting the

2-approximation. In Section 3, we prove that the variant of the Metric RBFL in which

each client has either blue demand or red demand is also NP-hard.

2. Red-Blue Facility Location with Equal Red-Blue Demands

We consider the Unitary Demands Metric RBFL without opening costs, stated as follows.



Problem 2. Unitary-Demands Red-Blue Facility Location (UD-RBFL)

Instance: a set F of facilities, a set C of clients, and a metric d : (C ∪ F )2 → Q+.

Solution: a partition F = Fr ∪ Fb that minimizes the sum
∑

c∈C (d(c, Fr) + d(c, Fb)).

Next we describe a 2-approximation for UD-RBFL. The algorithm also works for

instances of the Metric RBFL where the red and blue demands of each client are the same.

Let (F,C, d) be an instance of the UD-RBFL. If |F | ≤ 1, any solution is optimal.

So assume |F | ≥ 2. Consider the directed graph D with set of vertices F = {f1, . . . , fn}
and set of arcs {(f, f ′) : f, f ′ ∈ F and f ′ ∈ argminx∈F\{f} d(f, x) with smallest index}.
Since the outdegree of every vertex in D is one, we may define a function FD : F → F
that takes each facility to the head of the arc leaving it in D. We use the digraph D and

the function FD to design an approximation for UD-RBFL.

If vertices v1, v2, . . . , vk ∈ F form a directed cycle in D, then, by the definition

of D, d(v1, v2) ≤ d(vk, v1) ≤ d(vk−1, vk) ≤ · · · ≤ d(v2, v3) ≤ d(v1, v2), and hence

d(vi, FD(vi)) = d(v1, v2) for every i in 1, 2, . . . , k. Because the arcs leaving the vertices

v1, v2, . . . , vk will land on the vertex with minimum distance and smallest index, there is

no cycle longer than two in D. Indeed, no vertex in a cycle would point to the one with

the largest index in the cycle unless it was its only option.

Because the outdegree of D is one, there is exactly one (length-two) cycle in each

connected component. Therefore, the digraph is bipartite. Algorithm 1 uses the bipartition

to decide which facilities are red and which are blue. In it, we denote by DIGRAPH the

procedure that constructs the digraph D from F and d.

Algorithm 1: UD-RBFL-2approx(F,C, d)

Fr ← ∅
Fb ← ∅
D ← DIGRAPH(F, d)
foreach {f, f ′} ⊆ F that forms a cycle in D do

Fr ← Fr ∪ {f}
Fb ← Fr ∪ {f

′}

while F 6= Fr ∪ Fb do
Let f ∈ F \ (Fr ∪ Fb) be such that FD(f) ∈ Fr ∪ Fb

if FD(f) ∈ Fr then
Fb ← Fb ∪ {f}

else
Fr ← Fr ∪ {f}

return Fr, Fb

Theorem 1. Algorithm 1 is a 2-approximation for UD-RBFL.

Proof. Let (F,C, d) be an instance of UD-RBFL with |F | ≥ 2. For a client c ∈ C,

we denote by cost(c) the cost for client c in the solution given by the algorithm, that is,

d(c, Fr) + d(c, Fb). Let f1, f2 ∈ F be the first and second closest facilities to c according

to d and let optcost(c) = d(c, f1) + d(c, f2) be a lower bound on the cost that c must pay

to access a red and a blue facility in an arbitrary solution. This lower bound is achieved



when one among f1 and f2 is red and the other is blue in the considered solution. In

particular, cost(c) = optcost(c) if Algorithm 1 assigns different colors to f1 and f2.

If Algorithm 1 makes both f1 and f2 red (blue), then, by construction of the col-

oring, f = FD(f1) is blue (red), and the cost for c is

cost(c) ≤ d(c, f1) + d(c, f)

≤ d(c, f1) + d(c, f1) + d(f1, f)

≤ d(c, f1) + d(c, f1) + d(f1, f2)

≤ d(c, f1) + d(c, f1) + d(c, f1) + d(c, f2)

≤ d(c, f1) + d(c, f2) + d(c, f1) + d(c, f2)

≤ 2 optcost(c).

Since the cost of the solution produced by Algorithm 1 is the sum of the costs for all

clients, the solution found is a 2-approximation.

We can apply Algorithm 1 also to instances in which the ratio between the blue

and red demands of each client lies in [1/c, c] for a constant c ≥ 1. The approximation

ratio achieved is 1 + c, which is better than 4 if c < 3 and approaches 2 as c goes to 1.

Now we prove that UD-RBFL is NP-hard by presenting a reduction from the

following classical decision problem:

Problem 3. Splitting Set

Instance: a set S and a collection C of subsets of S.

Question: is there a partition S = Sr ∪ Sb such that C ∩ Sr 6= ∅ and C ∩ Sb 6= ∅ for

every C ∈ C?

Theorem 2. UD-RBFL is NP-hard.

Proof. Let (S, C) be an instance of Splitting Set. We construct an instance of UD-RBFL

where F = S are the facilities, C = C are the clients, and the distance between a client c
and a facility f is defined as:

d(c, f) =

{

1 if f ∈ c
3 otherwise.

The construction of d clearly takes polynomial time. Besides, d may be extended

to the shortest path metric induced on F ∪ C. It remains to show the following.

Claim 1. The instance (S, C) of Splitting Set has a positive answer if and only if there is

a solution for (F,C, d) with cost at most 2 |C|.

Proof of the claim. Assume there is a solution S = Sr ∪ Sb for the instance of Splitting

Set. Then, for every client c ∈ C, there are two facilities f1 ∈ Sr and f2 ∈ Sb with

distance one to c, and F = S = Sr ∪ Sb is a solution for (F,C, d) with cost 2 |C|. Now

assume there is a solution F = S = Sr ∪ Sb for (F,C, d) with cost at most 2 |C|. Then

there must be facilities f1 ∈ Sr and f2 ∈ Sb such that d(c, f1) = 1 and d(c, f2) = 1 for

every c ∈ C. This is the same as saying that c ∩ Sr 6= ∅ and c ∩ Sb 6= ∅, hence there is a

solution to problem Splitting Set.



3. Red-Blue Facility Location with Exclusive Demands

On the other extreme, we consider the case of RBFL in which each client has either red

demand or blue demand, and we show that this case is also NP-hard. We keep studying the

unitary version, since the weighted one, in this case, is equivalent to the general RBFL.

Problem 4. Unitary-Demand Exclusive Red-Blue Facility Location (UDX-RBFL)

Instance: set F of facilities, sets R and B of clients, and metric d : (F ∪R ∪B)2 → Q+.

Solution: partition F = Fr ∪ Fb that minimizes the sum
∑

c∈R d(c, Fr) +
∑

c∈B d(c, Fb).

Theorem 3. UDX-RBFL is NP-hard.

Proof. The reduction is from the following classical NP-complete problem.

Problem 5. Exact Cover by 3-Sets (X3C)

Instance: a 3-regular bipartite graph G = ((X, Y ), E) such that |X| = |Y | = 3k.

Question: is there a subset of A with k vertices that dominates B?

For an instance ((X, Y ), E) of X3C, consider the following instance of UDX-

RBFL. The set F = X ∪ X ′, where X ′ is a copy of X . The set B = Y and the set

R = X ′′, where X ′′ is another copy of X . For every facility x ∈ X and blue client y ∈ Y
with {x, y} ∈ E, set ℓ(x, y) = 1. For every red client x′′ ∈ X ′′, set ℓ(x′′, x) = 1 and

ℓ(x′′, x′) = 3, where x and x′ are the copies of x′′ in X and X ′ respectively. Take d as

the shortest path metric induced by ℓ on F ∪ B ∪ R . The construction of this instance

is polynomial, so Theorem 3 follows from the next claim, whose proof we omit in this

abstract.

Claim 2. Instance ((A,B), E) of X3C has a positive answer if and only if there is a

solution of cost at most 8k for the (F,B,R, d) instance of UDX-RBFL.
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