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Abstract. A graph is (k, l) if its vertex set can be partitioned into k independent
sets and l cliques. Deciding if a graph is (k, l) can be seen as a generalization
of coloring, since deciding is a graph belongs to (k, 0) corresponds to deciding
if a graph is k-colorable. A coloring is equitable if the cardinalities of the color
classes differ by at most 1. In this paper, we generalize both the (k, l) and the
equitable coloring problems, by showing that deciding whether a given graph
can be equitably partitioned into k independent sets and l cliques is solvable in
polynomial time if max(k, l) ≤ 2, and NP-complete otherwise.

1. Introduction
The Vertex Coloring Problem (VCP) consists of partitioning the vertex set of a graph into
k disjoint sets, such that no edges has both endpoints in the same set. This problem is
known to be NP-complete [Karp 1972]. A widely studied variation of this problem is the
Equitable Coloring Problem, in which we want the cardinalities of the sets to differ by
at most 1. The latter is also NP-Complete, since it can be reduced from VCP by adding
sufficiently many isolated vertices.

Let (k, l) be the set of graphs that can be partitioned into k independent sets and
l cliques. Recognizing (k, l) graphs can be seen as a generalization of the Equitable
Coloring Problem (ECP), since deciding if a graph belongs to (k, 0) corresponds to de-
ciding if the graph is k-colorable. This problem was shown to be solvable in polynomial
time if max(k, l) ≤ 2, and NP-complete otherwise [Brandstädt 1996, Brandstädt 1998,
Brandstädt 1984].

In this paper we introduce the equitable version of the (k, l) problem: we want
the partition to be equitable. For that, let’s define (k, l)E as the set of graphs that can be
equitably partitioned into k independent sets and l cliques, that is, the cardinalities of the
sets differ by at most 1. It is easy to see that this is a generalization of ECP.

If G is the complement graph of G, then G ∈ (k, l)E if and only if G ∈ (l, k)E .
Checking whether G ∈ (1, 0)E is to check if G has no edges, and to check whether G ∈
(0, 1)E is to check if G is complete. Both can be easily done in linear time.

2. Recognition of (1, 1)E Graphs
For a vertex x ∈ V , let N(x) be the neighborhood of x and N(x) be the set of non-
neighbors of x. We will also denote N [x] as N(x) ∪ x and N [x] as N(x) ∪ x.

Let G = (V,E) be a graph, and x ∈ V a vertex from G. We want to find an
independent set I and a clique C such that I ∪ C = V . If x ∈ I , then it does not have



a neighbor in I . Therefore, x ∈ I ⇒ N(x) ⊆ C, that is, N(x) ∈ (0, 1). Similarly, if
x ∈ C, then it is neighbor with all other vertices in C: x ∈ C ⇒ N(x) ∈ (1, 0). So we
check, for every vertex x from G, if 1) N(x) ∈ (0, 1) and 2) N(x) ∈ (1, 0).

If there is a vertex that does not satisfy any of the previous conditions, then G /∈
(1, 1)E . If there is a vertex x such that both 1 and 2 holds, then we can observe that
N [x] ∈ (1, 0), and N [x] ∈ (0, 1). Therefore, it is enough to insert x in the set that has
fewer elements, and we get the partitions I = N [x] and C = N(x), or I = N(x) and
C = N [x]. If the partition is equitable, then G ∈ (1, 1)E . Otherwise, G /∈ (1, 1)E .

If every vertex satisfy exactly one of the conditions, we can construct the sets I
and C in the following manner: for each vertex x ∈ G, if x satisfies condition 1, insert it
in I . if x satisfies condition 2, insert it in C. If at the end of the construction I ∈ (1, 0)
∧ C ∈ (0, 1) ∧ ||I| − |C|| ≤ 1, then G ∈ (1, 1)E . Otherwise, G /∈ (1, 1)E .

Checking conditions 1 and 2 can be easily done inO(|V |2) time. Hence, deciding
if G ∈(1, 1)E can be solved in O(|V |3) time.

3. Recognition of (2, 0)E Graphs
Deciding whether a graph G = (V,E) ∈ (2, 0)E is the same as deciding if G is equitably
bipartite. For the sake of completeness we will prove this result here.

Verifying if G ∈ (2, 0) can be easily done inO(|V |2). If G is connected we check
if the partition is equitable. Otherwise, we initially have two possibilities of partitioning
for each connected component. In that case, we first find a bipartition for each of the c
connected components of G. If any of them is not bipartite, then G /∈ (2, 0)E . Let xi and
yi be the number of vertices in each of the sets from the partition of the i-th connected
component of G.

We define the function f(i, S), that equals TRUE if starting from the connected
component with index i, there is a partition in two independent sets such that the number
of vertices in one of the two sets is equal to S. Otherwise, f(i, S) equals FALSE. Now
we can notice that f(1,

⌊ |V |
2

⌋
) answers if G ∈ (2, 0)E . This strategy is similar to the

standard pseudo-polynomial algorithm for the Partition problem, with the difference that,
in our case, numbers are bounded by the instance size.

Theorem 1. Deciding if G = (V,E) ∈ (2, 0)E can be solved in O(|V |2) time.
Proof. To prove that f(1,

⌊ |V |
2

⌋
) can be computed in O(|V |2) time, we will show that we

only have to compute O(|V |2) values of f , and that each of them can be computed in
O(1) time, using previously computed values.

To actually compute f(i, S), we check both possibilities of partition of the i-th
connected component. Depending on which one we choose, the number of vertices we
will need starting from the (i+1)-th connected component is either S−xi or S− yi. The
full algorithm to compute f(i, S) is shown is Algorithm 1.

Since the values in the first parameter of f varies from 1 to c, which is O(|V |),
and the second parameter varies from −

⌈ |V |
2

⌉
to

⌊ |V |
2

⌋
, which is also O(|V |), computing

f(1,
⌊ |V |

2

⌋
) depends on O(|V |2) previous values of f . Moreover, the computation of f

takes O(1) assuming the values it depends on are already computed. Therefore, as long
as values are not recalculated, computing f(1,

⌊ |V |
2

⌋
) can be done in O(|V |2) time.



Algorithm 1
Input: number c of connected components; x1, y1, . . . , xc, yc, number of vertices in each

set of the partition.
1: function f (i, S)
2: if i = c then
3: if S = xc ∨ S = yc then return TRUE
4: else return FALSE

5: else return f(i+ 1, S − xi) ∨ f(i+ 1, S − yi)

4. Recognition of (2, 1)E Graphs

For the recognition of (2, 1)E graphs, we will use an algorithm to find a (2, 1) partition
of G. If G /∈ (2, 1), then G /∈ (2, 1)E . Let I1, I2, and C be respectively the independent
sets and the clique that partition G, such that I1 ∪ I2 ∪ C = V (G). Let I ′1, I

′
2, and C ′ be

respectively the independent sets and the clique that equitably partition G. Since I1 is an
independent set, it is true that ∀u, v ∈ I1, (u, v) /∈ E(G). Therefore, at most one vertex
of I1 can belong to C ′, given that C ′ is a clique. Similarly, at most two vertices of C can
belong to I ′1 ∪ I ′2, each one in one of the sets.

Now, we look at all the possibilities to insert I1, I2, and C in I ′1, I
′
2, and C ′. For

each possibility, we check if I ′1 ∪ I ′2 ∈ (2, 0)E , if C ′ ∈ (0, 1), and if the partition is
equitable. If that is the case for any of the possibilities, then G ∈ (2, 1)E . Otherwise,
G /∈ (2, 1)E .

There are O(|V |) ways to choose one vertex from I1, O(|V |) ways for I2 and
O(|V |2) ways to choose two vertices from C. For every choice, checking whether I ′1 ∪
I ′2 ∈ (2, 0)E can be done in O(|V |2) time, from Theorem 1. It is trivial to check if C ′ ∈
(0, 1) in O(|V |2). Hence, checking each of the O(|V |4) possibilities is O(|V |2), which
gives a total of O(|V |6). It is known that a (2, 1) partition of a graph can be found in
O(|V |4) time [Brandstädt 1996, Brandstädt 1998, Brandstädt 1984], so deciding if G ∈
(2, 1)E can be done in O(|V |6) time.

5. Recognition of (2, 2)E Graphs

We will use the same technique that was used in the (2, 1)E recognition for the (2, 2)E
recognition. If G /∈ (2, 2), then G /∈ (2, 2)E . Now suppose that G ∈ (2, 2). Let I1, I2,
C1, and C2 be respectively the independent sets and the cliques that equitably partition G.

Since I1 is an independent set, then at most two of it’s vertices can belong to
C ′

1 ∪ C ′
2, each one in one of the cliques, and the same is true for I2. Moreover, since C1

is a clique, then at most two of it’s vertices can belong to I ′1 ∪ I ′2, each one in one of the
sets, and that also holds for C2. So, there are O(|V |8) possibilities of insertion in I ′1, I

′
2,

C ′
1, and C ′

2. If any of them is valid, that is, if they make an equitable partition of G, then
G ∈ (2, 2)E . Otherwise, G /∈ (2, 2)E .

For every one of the O(|V |8) possibilities, we check if I ′1 ∪ I ′2 ∈ (2, 0)E , if
C ′

1 ∪ C ′
2 ∈ (0, 2)E and if the partition is equitable. Those conditions can be verified in

O(|V |2), from Theorem 1. Thus, given a (2, 2) partition of G, we can answer if G ∈
(2, 2)E in O(|V |10) time.



The best known algorithm capable of finding a (2, 2) partition of a graph runs
inO(|V |12) [Brandstädt 1996, Brandstädt 1998, Brandstädt 1984]. Hence, we are limited
by that complexity, and answering whether G ∈ (2, 2)E can be done in O(|V |12) time.

6. (k, l)E recognition for other values of k and l

We will now show that (k, l)E recognition for max(k, l) ≥ 3 is NP-complete. For that,
we will make a reduction from the problem EQUITABLE COLORING. It is known that
deciding whether a given graph G can be equitably colored with k colors is NP-complete
for k ≥ 3.

Let’s define the join of two graphs G and H as the graph obtained by the disjoint
union of G and H and the addition of all edges between vertices of G and H . It suffices
to show that (k, l)E is NP-complete for k ≥ 3, since that G ∈ (k, l)E ⇔ G ∈ (l, k)E .

Theorem 2. Deciding if G = (V,E) ∈ (k, l)E for max(k, l) ≥ 3 is NP-complete.

Proof. Since checking independent sets and cliques can be easily done in O(|V |2), the
problem belongs to NP. An instance of the EQUITABLE COLORING receives a graph
G = (V,E) and an integer k, and outputs YES if G can be equitably colored with k
colors. We may assume that |V | ≥ 2k, otherwise we can color G in polynomial time by
finding a maximum matching in the complement, and that k divides |V |, by adding an
isolated clique of size at most k − 1. Let r = |V |

k
. Notice that r ≥ 2.

Let C a complete graph of l · r vertices and let G′ be the join of G and C. We will
show that G′ ∈ (k, l)E if and only if G can be equitable colored with k colors. If G can
be equitably colored with k colors, then each color class of an equitable coloring of G has
exactly r vertices. Hence we can partition the original vertices of G′ into k independent
sets, and vertices from C into the l cliques of size r.

Conversely, if G′ ∈ (k, l)E , then we must make the following observation: if a
vertex from V (C) belongs to one of the k independent sets, then no other vertex of G′ can
belong to that independent set, since vertices of V (C) are universal in G′. Now, due to
the fact that |V (G)| ≥ 2k, we have that |V (G′)| ≥ 2(k + l), that is, each independent set
has at least 2 vertices in any equitable partition. Therefore, none of the inserted vertices
of G′ belong to an independent set. So the original vertices of G form the k independent
sets, that is, G can be equitably colored with k colors.
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