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1Programa de Engenharia de Sistemas e Computação – COPPE
Universidade Federal do Rio de Janeiro (UFRJ)

Caixa Postal 68.511 – 21.941-972 – Rio de Janeiro – RJ – Brazil

2Instituto Federal do Rio de Janeiro (IFRJ) – Nilópolis, RJ – Brazil
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Abstract. The family of graphs H`,p has been defined in the context of edge par-
titions. The established properties such as vertex transitivity and low diameter
suggest this family as a good topology for the design of interconnection net-
works. The vertices of the graph H`,p are the `-tuples with values between 0 and
p − 1, such that the sum of the ` values is a multiple of p, and there is an edge
between two vertices, if the two corresponding tuples have two pairs of entries
whose values differ by one unit. In order to work towards the diameter, the dif-
ference between an upper and a lower bounds is established to be at most `+ p
and we present subfamilies of graphs H`,p such that, for several values of ` and
p, the bounds are tight.

1. Introduction
In this work, we are motivated by the design and analysis of static networks. Static net-
works can be modeled using tools from Graph Theory. A graph represents an interconnec-
tion network, where the processors are the vertices and the communication links between
processors are the edges connecting the vertices. There are several parameters of interest
to specify a network: for instance low degree and low diameter. The degree relates to the
port capacity of the processors and hence to the hardware cost of the network. The maxi-
mum communication delay between a pair of processors in a network is measured by the
diameter of the graph. Thus, the diameter is a measure of the running cost. Cayley graphs
are connected vertex-transitive graphs that provide two challenging and extensively stud-
ied problems: Hamiltonian cycle and graph diameter. Cayley graphs are regular, in some
cases have logarithmic diameter, and can be used to design interconnection networks
[Vadapalli and Srimani 1996].

This paper is organized as follows: In Section 2, the definition of Cayley graphs is
introduced to explain the concept of abstract groups, which are described by a generating



set and we define the graph H`,p. Section 3 is devoted to describe exact formulas for the
diameter of subfamilies of graphs H`,p such that the known bounds are reached as well as
the values between them.

2. The Cayley Graph H`,p

Let (G,+) be a group and C ⊆ G be a generating set of G in which any element of G
can be obtained from elements of C by a finite number of applications of the operation
+. A directed graph Γ = (V,E) is a Cayley graph for a group (G,+) with a generating
set C, if there is a bijection mapping each x ∈ V to an element gx ∈ G, such that xy is a
directed edge of E if and only if there exists c ∈ C such that gy = c + gx. If the identity
element ι /∈ C, then there are no loops in Γ, and Γ satisfies the identity free property. If
g ∈ G then there is a unique g′ ∈ G such that g + g′ = ι, denote g′ by −g and in this
case we define gx − gy = gx + (−gy). If c ∈ C implies −c ∈ C, then for every edge
from g to g + c, there is also an edge from g + c to (g + c) + (−c) = g, and Γ satisfies
the symmetry condition. A Cayley graph that satisfies both the identity free property and
the symmetry condition is an undirected graph. The graphs H`,p considered in this paper
are undirected Cayley graphs associated to the group (V`,p,+) with generating set C`,p

[Ribeiro et al. 2010].

For each ` ≥ 3 and p ≥ 3, Holyer [Holyer 1981] defines a graph H`,p =
(V`,p, E`,p) where

V`,p = {x = (x1, ..., x`), with xk ∈ Zp and
∑̀
k=1

xk ≡p 0},

E`,p = {xy : there are distinct i, j such that yk ≡p xk for k 6= i, j and yi ≡p

xi + 1, yj ≡p xj − 1}.
The vertices of H`,p are the elements of a finite group (V`,p,+), where the opera-

tion + is such that x + y = (x1, . . . , x`) + (y1, . . . , y`) = (x1 + y1, . . . , x` + y`), where
xk +yk is the operation in (Zp,+), for x, y ∈ V`,p and the element (0, 0, . . . , 0, 0) ∈ V`,p is
the identity vertex ι. The generating set C`,p is the set of `-tuples ei,j = (c1, . . . , c`) such
that, for i, j ∈ {1, . . . `} with i 6= j, we have that ck = 1 when k = i, ck = p − 1 when
k = j, and otherwise ck = 0.

3. Diameter of Graph H`,p

As the graphH`,p has p`−1 vertices, Castonguay et al.[Castonguay et al. 2015] highlighted
some special vertices to study the diameter of the graphH`,p and obtained an upper bound
for this diameter to be

⌊
`·p
4

⌋
. The diameter can be found by the greatest value of the

distance from each special vertex to the identity vertex ι. For the sake of completeness,
we rewrite the results presented in [Castonguay et al. 2015, Lemma 11] as D(H`,p) =
maxt{(`− t) ·

⌊
t·p
`

⌋
}, for 0 ≤ t < `.

Note that a lower bound for the diameter of H`,p is found when t =
⌊
`
2

⌋
, thus the

solution of the diameter problem for the graph H`,p is Θ(` · p).

Proposition 1 presents the difference between the known bounds on the diameter
of the graph H`,p.



Proposition 1. The difference between an upper and a lower bounds
⌊
`·p
4

⌋
−(

`−
⌊
`
2

⌋) ⌊b `
2c·p
`

⌋
is at most `+ p.

Proof. We omit in the present extended abstract the explicit calculations.

Table 1 presents the specific cases for which these bounds are known to be tight.
[Castonguay et al. 2015].

Table 1. Exact known values on the diameter

Graph H`,p Lower Bound Reached Upper Bound Reached Diameter

` and p even always always `·p
4

p is a multiple of ` always when ` is even p·b `2 c·d
`
2 e

`

p is a multiple of ` odd always never p·`
4 −

p
4·`

p = ` and p = `+ 1 always when p = ` is even b `2c · d
`
2e

` = 2 always when p is even bp2c

` = 3 always never b 2·p3 c

` = 4 always when p is even 2 · bp2c

Propositions 2 and 3 present two subfamilies of graphs H`,p for which we are able
to establish new exact values on the diameter.

Proposition 2. Let z, h ∈ Z+, so D(H2·z,h·z) =


⌊
z2

2

⌋
· h, if z ≥ h and h is odd;

⌊
hz
2

⌋
· z, otherwise.

Proof. Since ` = 2z and p = hz, we have that D(H2·z,h·z) = max
{

(2z − t)
⌊
t·h
2

⌋}
,

for 0 ≤ t < `. Considering h or z even, we have that ` and p are even, by Table 1,
D(H2z,hz) = 2z·hz

4
= hz2

2
. Clearly, if h and z are even, then D(H2z,hz) = hz2

2
. As we

desired,
⌊
hz
2

⌋
· z = hz2

2
. We omit the proof for h and z odd considering the parity of

t in this extended abstract , however we find that D(H2z,hz) = max
{

h·z2−z
2

, h·z
2−h
2

}
.

Therefore, if z ≥ h then D(H2z,hz) = h·z2−h
2

= h·(z2−1)
2

=
⌊
z2

2

⌋
· h. If z < h then

D(H2z,hz) = h·z2−z
2

= z·(hz−1)
2

=
⌊
hz
2

⌋
· z.

Proposition 3. Let z, h ∈ Z+, we have that

D(H4·z,h·z) =


z2 · h− z, if z < h−1

2
and h,z are odd;

4z2·h−2z−h+1
4

, if h−1
2
≤ z ≤ 3h+1

2
and h,z are odd;

z2 · h− h, if z > 3h+1
2

and h,z are odd;
z2 · h, otherwise.



Proof. Since ` = 4z and p = hz, we have thatD(H4z,hz) = max
{

(4z − t)
⌊
th
4

⌋}
for 0 ≤

t < `. Considering h or z even, we have that ` and p are even, by Table 1, D(H4z,hz) =
4z·hz
4

= h · z2.
Considering h and z odd, we have five cases. We omit the proof for th, th −

1, th − 2, th − 3 and th − 4 multiple of 4 in this extended abstract, however we find
that D(H4z,hz) = max

{
4z2·h−2z−h+1

4
, 4z

2·h−6z−h+3
4

, z2 · h− h, z2 · h− z
}

= z2 · h +

min
{

2z+h−1
4

, 6z+h−3
4

, h, z
}

. Comparing these results, we have that if 6z+h−3
4

< 2z+h−1
4

then z < 1
2
. So, the expression 6z+h−3

4
can be regarded. Note that if 2z+h−1

4
≤ h then z ≤

3h+1
2

, and if 2z+h−1
4
≤ z then z ≥ h−1

2
. So, for z and h odd: D(H4z,hz) = 4z2·h−2z−h+1

4
if

h−1
2
≤ z ≤ 3h+1

2
, and D(H4z,hz) = z2 · h− z, if z > h−1

2
and D(H4z,hz) = z2 · h− h, if

z > 3h+1
2

. This concludes the proof.

In Table 2 we can see how these new results can be found based on the obtained
bounds as well as the values between them.

Table 2. New exact values on the diameter.

Graph H`,p Lower Bound Upper Bound Diameter Neither lower
nor upper bounds

` = 2 · z, p = h · z
where z, h ∈ Z+

If z ≤ h and h, z odd;
or if h even; or if z even

If z even;
or if h = 1;
or h even

It depends on
z and h

If z > h and h, z odd

` = 4 · z, p = h · z
where z, h ∈ Z+

If z ≤ h−1
2 and h, z odd;

or if h even; or if z even
If z even;
or h even

It depends on
z and h

If z > 3h+1
2 and h, z odd;

or if h−1
2 < z < 3h+1

2

4. Conclusion
Several authors observed that Cayley graphs provide a useful and unified framework for
the design of interconnection networks for parallel computers. For the family of graphs
H`,p, we obtain new results for the diameter of subfamilies of graphs H`,p that show that
the known bounds for the diameter are tight. This established property makes the Cayley
graph H`,p a good scheme of interconnection networks.
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