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Abstract. Given a (vertex)-coloring C = {C1, C2, ...Cm} of a digraph D and

a positive integer k, the k-norm of C is defined as |C|k =
∑m

i=1
min{|Ci|, k}.

A coloring C is k-optimal if its k-norm |C|k is minimum over all colorings. A

(path) k-pack Pk is a collection of at most k vertex-disjoint paths. A coloring

C and a k-pack Pk are orthogonal if each color class intersects as many paths

as possible in Pk, that is, if |Ci| ≥ k, |Ci ∩ Pj| = 1 for every path Pj ∈
Pk, otherwise each vertex of Ci lies in a different path of Pk. In 1982, Berge

conjectured that for every k-optimal coloring C there is a k-pack Pk orthogonal

to C. This conjecture is false for arbitrary digraphs, having a counterexample

with odd cycle. In this paper we prove this conjecture for bipartite digraphs.

1. Introduction

Given a digraph D, we denote its set of vertices by V (D) and its set of arcs by A(D).
The order of D is the cardinality of V (D), denoted by n. An independent (vertex)-set is

a set of pairwise non-adjacent vertices. We denote as α(D) the cardinality of a maximum

independent vertex-set of a digraph D. A vertex cover of a digraph D is a vertex cover

of its underlying undirected graph G(D), i. e., a subset V ′ of V (G) such that every edge

e ∈ E(G) has at least one end in V ′. We denote the cardinality of the minimum vertex

cover as τ(D). Gallai [Gallai 1959] observed a relation between a maximum independent

set and a minimum vertex cover for general graphs.

Theorem 1 (Gallai). For any graph G, α(G) + τ(G) = n.

A digraph D is (X, Y)-bipartite if V (D) = X ∪Y,X ∩Y = ∅ and D[X] and D[Y ]
are independent sets. A matching in a digraph D is a subset M ∈ A(D) where, for every

vertex v ∈ V , at most one arc of M is incident with v. We denote the cardinality of a

maximum matching by α′(D). König [König 1931] showed the equivalence between the

maximum matching problem and the minimum vertex cover problem in bipartite graphs:

Theorem 2 (König). If G is a bipartite graph, then τ(G) = α′(G).
Corollary 1. If G is a bipartite graph then α′(G) + α(G) = n.

A path (v1, v2, . . . , vp) is a sequence of vertices such that arc (vi, vi+1) ∈ A(D)
for 1 ≤ i < p. The cardinality of a path is the number of vertices p in the sequence,

which is an unusual definition. We denote by λ(D) the cardinality of a maximum path in

D. An m-(vertex)-coloring (or simply a coloring) C = {C1, C2, ..., Cm} is a collection
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of disjoint independent sets, also called color classes, where
⋃

{Ci : Ci ∈ C} = V (G).
A coloring C of D is optimal if there is no other coloring with few color classes. The

chromatic number of D, denoted by χ(D), is equal to the size of an optimal coloring of

D. Roy [Roy 1967] and Gallai [Gallai 1968], independently proved that the size of an

optimal coloring is smaller or equal to the size of the largest path in D. Shortly after

Gallai-Roy’s theorem, Mirsky [Mirsky 1971] proved the equality for a specific class of

digraphs.

Theorem 3 (Gallai-Roy). For every digraph D, χ(D) ≤ λ(D).
Theorem 4 (Mirsky). If D is an acyclic transitive digraph, then λ(D) = χ(D).

Some time later, a new metric of minimality and maximality was established,

using a positive integer k to redefine optimal collections of paths and optimal colorings.

Given a coloring C = {C1, C2, ..., Cm} and a positive integer k, the k-norm of C is defined

as

|C|k =
m∑

i=1

min{|Ci|, k}.

A coloring C of D is k-optimal if there is no coloring B of D where |B|k < |C|k. We

denote as χk(D) the k-norm of a k-optimal coloring of D. A (path) k-pack Pk is a

collection of at most k (vertex-)disjoint paths of a digraph D. The weight of Pk is defined

as | ∪P∈Pk V (P )| and denoted as ||Pk||. A k-pack is optimal if its weight is maximum.

The weight of an optimal k-pack for D is denoted as λk(D). Using this new metric,

Greene [Greene 1976] showed that the equality holds for acyclic transitive digraphs, and

Linial [Linial 1981] conjectured that an inequality should hold in general:

Theorem 5 (Greene). If D is an acyclic transitive digraph and k a positive integer, then

χk(D) = λk(D).
Conjecture 1 (Linial’s Dual Conjecture). If D is a digraph and k is a positive integer,

then χk(D) ≤ λk(D).

A stronger conjecture was proposed introducing the concept of orthogonality. A

coloring C = {C1, C2, ..., Cm} and a k-pack are orthogonal if each color class Ci ∈ C
meets min{|Ci|, k} different paths of Pk.

Conjecture 2 (Berge’s Dual Conjecture - false). For every k-optimal coloring C of a

digraph D, there is a k-pack orthogonal to C.

Berge’s Dual Conjecture implies Linial’s Dual Conjecture because λk(D) is at

least the size of the set of vertices covered by the k-pack orthogonal to the coloring, which

in turn is exactly χk(D). However, Berge’s Dual Conjecture is known to be false for

arbitrary digraphs, having a counterexample, which is depicted in Figure 1. The digraph

has an 1-optimal coloring, but there is no path able to meet every color of this digraph.
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Figure 1. Berge’s Dual Conjecture Counterexample



On the other hand, it was not known so far whether the conjecture was true for

bipartite digraphs. Note that the underlying undirected graph of the counterexample is an

odd cycle, and bipartite digraphs are free of such structure.

There is an analogue set of theorems and conjectures which are obtained by chang-

ing the roles of paths and independent sets. Actually, in historical terms the version of

such theorems and conjectures first discovered where not the ones presented in this pa-

per, but the ones with roles changed. That is why Berges’s Dual Conjecture and Linial’s

Dual Conjecture are called Dual conjectures in this paper. Moreover, the validity of the

primal version of the Berge’s Conjecuture for the bipartite digraphs has already been

shown [Berge 1982] by Berge himself in the same paper where the primal conjecture was

proposed. A comprehensive survey on both primal and dual versions of these problems

can be found in [Hartman 2006].

2. Berge Dual Conjecture for Bipartite Digraphs

In this section, we show that for bipartite digraphs the problem of finding a k-pack orthog-

onal to the given optimal coloring reduces to the problem of finding a k-pack composed by

a selection of min{α′(D), k} arcs of a maximum matching of D together with k−α′(D)
unmatched vertices of D which must be selected with some criteria. This implies that, in

the bipartite case, the directions of the arcs are not relevant to the proof of Berge’s Dual

Conjecture. Moreover, the fact of the digraphs are bipartite, and, thus, admit a 2-coloring,

implies the important observation that for every coloring C the k-norm of C is at most

2k, so χk(D) ≤ 2k. Therefore, if there is two color classes of size at least k, then there

cannot be more color classes.

Theorem 6. Let D be a bipartite digraph and C a k-optimal coloring of D. Then, there

is a k-pack P orthogonal to C.

Proof. Let C = {C1, C2, ..., Cm} be a k-optimal coloring of D. We may assume, without

loss of generality, that |C1| ≥ |C2| ≥ ... ≥ |Cm|. We will prove that there always is a k-

pack P composed by a matching and unmatched vertices that meets min{|Ci|, k} vertices

for each Ci. If P meets min{|Ci|, k} vertices for every Ci ∈ C the only missing restriction

to claim that orthogonality holds is the assurance that each color class meets different

paths. But since an arc in a matching can only connect vertices from different color

classes and unmatched vertices form different trivial paths, this condition is immediately

satisfied. Thus, P is a k-pack orthogonal to C whenever it has the described structure.

Consider first the case in which α(D) ≤ k. In this case, min{|Ci|, k} = |Ci| for

each Ci. Therefore, every vertex must be in some path of an orthogonal k-pack. Let M

be a maximum matching of D and let I be the set of vertices of D not matched by M . If

α′(D) + |I| ≤ k, the arcs in M together with the trivial paths with vertices of I form the

k-pack we are seeking. But this inequality is always valid since n = 2 ∗ α′(D) + |I| and,

by Corollary 1,

α′(D) + α(D) = 2 ∗ α′(D) + |I|

α(D) = α′(D) + |I|

≤ k.



We may thus assume that α(D) > k. If |C1| ≤ k, then min{|Ci|, k} = |Ci| for each

Ci and |C|k = V (D). In this case, an arbitrary coloring having a set of size α(D) as a

color class has smaller k-norm; a contradiction. Thus, |C1| > k. Consider first the case

in which n − |C1| ≤ k. We will now argue that |C1| = α(D) in this case. Assume the

contrary, that is, |C1| < α(D). Now let C ′ = {C ′
1, C

′
2, ..., C

′
m′} be some coloring of D

such that |C ′
1| = α(D). The k-norm of C ′ is thus at most k + n− α(D) < k + n− |C1|,

contradicting the fact that C is k-optimal. So, |C1| = α(D). By Corollary 1, α′(D) =
n − α(D) = n − |C1| ≤ k. One maximum matching M with α′(D) arcs cannot have

an arc with both ends in V (D) − C1 since that would imply that M would also have an

arc with both ends in C1, which is a stable set. Thus, every maximum matching M has

precisely one end in C1 and the other end in V (D)−C1. Since α′(D) ≤ k and every color

class Ci, i 6= 1 has size at most k, a k-pack P composed by some maximum matching M

together with k − α′(D) vertices of C1 as trivial paths is orthogonal to C.

Finally, consider the case in which n − |C1| > k. Since χk(D) ≤ 2k, we deduce

that C has precisely two color classes, both of size larger than k and χk(D) = 2k. Then,

an arbitrary subset of k arcs of some maximum matching M form a k-pack orthogonal

to C. It suffices thus to show that α′(D) ≥ k. By Corollary 1, α′(D) = n − α(D)
and if n − α(D) < k, then we may define a coloring C ′ = {C ′

1, C
′
2, ..., C

′
m′} of D such

that |C ′
1| = α(D) and whose k-norm would be smaller than 2k, a contradiction. Thus

α′(D) ≥ k indeed. And in every case considered there is a k-pack P orthogonal to C.
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