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Abstract. In the Cable-Trench Problem (CTP), the objective is to find a
rooted spanning tree of a weighted graph that minimizes the length of the
tree, scaled by a non-negative factor τ , plus the sum of all shortest-path
lengths from the root, scaled by another non-negative factor γ. This is an
intermediate optimization problem between the Single-Destination Shortest
Path Problem and the Minimum Spanning Tree Problem. In this extended
abstract, we consider the Generalized CTP (GCTP), in which some vertices
need not be connected to the root, but may serve as cost-saving merging
points; this variant also generalizes the Steiner Tree Problem. We present
an 8.599-approximation algorithm for GCTP. Before this paper, no con-
stant approximation for the standard CTP was known.

1. Introduction
An ubiquitous factor in the decision making of telecommunications and power dis-
tributions companies is the cost of deployment of a network infrastructure. This
cost might be associated with the deployment of the network, as well as the cost of
preparing the location for the deployment. For example, consider the scenario where
there is a set of clients which must be connected to a centralized hub through cables.
To connect cables between two locations, one must first dig a trench between them.
Once the trench is built, any number of cables may be deployed. The Cable-Trench
Problem (CTP) aims to minimize the combined cost of digging trenches and deploy-
ing cables. This problem was introduced by Vasko et al. (2002) and, although there
is a mistake in their NP-hardness proof, this problem can be shown to be NP-hard
by a reduction from the 3SAT. It is worth noting that CTP is a natural general-
ization of Minimum Spanning Tree and Single-Destination Shortest Path, which are
classical optimization problems solvable in polynomial time.

In practice, not all locations of a network must be connected, and thus CTP
might be too restrictive when clients may be routed through locations serving as
merging points. Ignoring such locations might increase the overall connection cost,
while including them as clients might incur in unnecessary cable costs. To tackle
this situation, we introduce the Generalized Cable-Trench Problem (GCTP), which
unlike CTP might contain optional non-client locations.
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Although CTP has been widely studied in the last two decades (Vasko
et al., 2002; Nielsen et al., 2008; Rocha, 2018), and many variants have been intro-
duced (Rocha et al., 2017), no constant-factor approximation algorithm is known.
In this extended abstract, we focus on the Generalization CTP. We show that an
α-approximation for CTP can be used as a black box to obtain an approximation
algorithm for GCTP with factor (3 +

√
17)α/2. As we also give the first approxima-

tion algorithm for CTP with factor 1 +
√

2 ≈ 2.415 (Theorem 2, whose proof will
be presented in a full-length paper), this implies the existence of an approximation
algorithm for GCTP with factor (3 +

√
17)(1 +

√
2)/2 ≈ 8.599 (Theorem 6).

2. Definitions and Auxiliary Results
Let G = (V,E) be a graph and c : E → Q+. We denote by PG(v, u) a shortest
path from v to u in G, and define c(PG(v, u)) as the sum of the cost of the edges in
PG(v, u). When T is a tree rooted at a vertex r, we simplify the notation writing
PT (v) := PT (v, r). Given a subset R ⊆ V of the vertices, known as terminals, we
define the functions cγ(T ) := ∑

v∈R c(PT (v)) and cτ (T ) := ∑
e∈ET

c(e). We omit the
subscripts when they are clear from the context.

In the Generalized Cable-Trench Problem (GCTP), an instance is a sixtuple
(G,R, r, c, γ, τ) composed of a connected graphG = (V,E), a set of terminalsR ⊆ V ,
a root r ∈ R, an edge cost function c : E → Q+, a cable scaling parameter γ ∈ Q+,
and a trench parameter τ ∈ Q+. A solution is a tree S that spans R and is rooted
at r. The objective is to find a solution that minimizes c(S) := τ · cτ (S) + γ · cγ(S).

We say that an instance I = (G,R, r, c, γ, τ) is metric if G is a complete
graph and c satisfies the triangle inequality. In particular, the Metric Generalized
Cable-Trench Problem is the restriction of GCTP to metric instances.
Lemma 1. Let I = (G,R, r, c, γ, τ) be an instance of GCTP. If I is not metric, then
I can be reduced in polynomial time to a metric instance (G′, R, r, c′, γ, τ) preserving
the approximation factor.

Proof. Let (G′, c′) be the metric closure of G with respect to c. Also, let S∗ be an
optimum solution for I and S ′∗ be an optimum solution for I ′ = (G′, R, r, c′, γ, τ).
Observe that c′(S ′∗) ≤ c(S∗), since any solution for I is a feasible solution for I ′.

For an edge e ∈ EG′ , let P (e) be the path on G corresponding to e. Given an
α-approximate solution S ′ for I ′, we construct a corresponding solution S for I by
taking S = G[E ], where E is the union of all edges in P (e) for every edge e ∈ ES′ .

Now observe that c(S) ≤ c′(S ′), as the lengths of shortest paths in S and
in S ′ are the same, and the full cost of (trench) edges in S can only get cheaper. It
follows that

c(S) ≤ c′(S ′) ≤ α · c′(S ′∗) ≤ α · c(S∗).

Because of Lemma 1, from now on we assume without loss of generality that
instances of GCTP are always metric. CTP is the particular case of GCTP in which
R = V , so Lemma 1 also applies to CTP. For CTP, we have the following theorem:



Theorem 2. There is a (1 +
√

2)-approximation for the Metric CTP.

Observe that GCTP is an extension of CTP in the same way that the Steiner
Tree Problem (STP) is an extension of the Minimum Spanning Tree Problem. A
solution need not to span every vertex in the graph, only a few are required, while
the others serve as optional cost-reduction consolidation points. Notice that STP is
the special case of GCTP where γ = 0, hence the same inapproximability result for
STP (Chleb́ık and Chleb́ıková, 2008) is also valid for GCTP.
Theorem 3. GCTP is NP-hard to approximate within a factor of 96/95.

3. Approximating the Generalized Cable-Trench Problem
We start with an auxiliary definition.
Definition 4. Let T be a tree rooted at a vertex r. A subgraph Y ⊆ T is said to
be fine if Y is connected and T − EY is composed of a tree which contains r and a
set of isolated vertices.

Suppose T ′ is the tree of T −EY containing the root r. Observe that if Y is
a fine subtree of T , then Y and T ′ share exactly one vertex, which is called the root
of Y and is denoted by rY . For a fine subtree Y , denote by RY the set of terminals
spanned by Y . We also associate the set of terminals R′Y as follows: contract Y into
a single vertex u; if u is a leaf, then let R′Y = RY , otherwise, define R′Y = RY \{rY }.

The following lemma states that one can reduce GCTP to CTP, in polynomial
time, increasing the approximation by a factor of at most (3+

√
17)/2 ≈ 3.562. The

core idea of the proof is to first partition the sets of edges and the set of terminals
of an optimal solution by successively finding fine subtrees with bounded number of
vertices. Each subtree Y will be associated with a set of terminals R′Y and a set of
edges EY .
Lemma 5. Let I = (G,R, r, c, γ, τ) be an instance of the metric GCTP such that
γ > 0 and τ/γ ≥ 8/(

√
17 − 1), and let I ′ = (G[R], r, c, γ, τ) be an instance of the

metric CTP. If S∗ is an optimal solution for I and T ∗ is an optimal solution for I ′,
then

c(T ∗) ≤ (3 +
√

17)
2 · c(S∗).

Proof sketch. Let d = (τ/γ) (
√

17− 1)/4. Next, we say that a fine subtree Y ⊆ T is
d-fine if d/2 ≤ |R′Y | ≤ d.

We will break S∗ into a set Y of d-fine subtrees and a subtree S ′ rooted at
r and with |RS′| ≤ d. Start by letting Y = ∅ and by taking S ′ = S∗. Now, if
|RS′ | > d, find a d-fine subtree Y of S ′. Then, add Y to Y and remove R′Y from S ′.
We repeat this process iteratively until |RS′ | ≤ d.

In the following, we create a feasible solution H for the reduced instance I ′.
Start with a graph H which is a minimum-cost tree spanning only RS′ and, for each
Y ∈ Y , let MY be a minimum-cost tree which spans only RY , and add MY to H.
Also, for each such Y , define y∗ = arg miny∈R′

Y
c(y, r), and add the edge {y∗, r} to

H at the end of each iteration. Since the sets R′Y and RS′ form a partition of R, in



the end of this process, H is a graph whose vertices span exactly R, and, therefore,
it serves as an upper bound for the cost of an optimum solution for I ′.

We calculate the trench cost of H by bounding the cost of each tree Y and
the edges of the form {y∗, r}. Since Y is a Steiner tree with regard to RY , and as it
is well known that a minimum spanning tree is a 2-approximation for STP, we have

cτ (MY ) ≤ 2 · cτ (Y ).
As for the edge {y∗, r}, we have

c(y∗, r) ≤ 2
d
· |R′Y | · c(y∗, r) ≤ 2

d
·∑y∈R′

Y
c(y, r).

The remaining edges of H correspond to S ′.
The total cable cost is bounded as follows: for each y ∈ R′Y , we bound the

cost to route from y to y∗, and from y∗ to the root r. By directing the edges ofMY

towards y∗, one may observe that each edge of MY is used at most |R′Y | times in
the path from a terminal y to y∗. We get∑

y∈R′
Y
c(PMY

(y, y∗)) ≤ |R′Y | ·
∑
e∈EMY

c(e) = |R′Y | · cτ (MY ) ≤ d · 2 · cτ (Y ).
Also, by the minimality of y∗, one has∑

y∈R′
Y
c(y∗, r) ≤ ∑

y∈R′
Y
c(y, r).

The remaining terminals correspond to RS′ .
The sets EY and ES′ partition the edges of S∗, and the sets R′Y and RS′

partition the vertices of S∗. By summing all components, one bounds the overall
cost of H:

c(H) ≤ ∑
Y ∈Y∪{S′}(2 + 2d) · τcτ (Y ) + ∑

Y ∈Y∪{S′}(2/d+ 1) ·∑y∈R′
Y
γ · c(y, r)

= (3+
√

17)
2 (τ · cτ (S∗) + γ ·∑v∈R c(v, r)) ≤ (3+

√
17)

2 · c(S∗).

Theorem 6. There is an approximation algorithm for the metric GCTP with factor
(3 +

√
17)(1 + 1

√
2)/2 ≈ 8.599.
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