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Abstract. In this paper we show that Linial’s Conjecture holds for two classes
of split digraphs, namely the spider digraphs and the k-loose digraphs.

1. Introduction
The digraphs considered in this text do not contain loops or parallel arcs and by path we
mean directed path. Let D be a digraph. We denote by V (P ) the set of vertices of a path
P . The size of a path P , denoted by |P |, is |V (P )|1. We denote by λ(D) the size of the
longest path in D and by α(D) the size of a maximum stable set. A path partition P of D
is a set of vertex-disjoint paths of D that cover V (P ). We say that P is an optimal path
partition if there is no path partition P ′ of D such that |P ′| < |P|. We denote by π(D)
the size of an optimal path partition of a digraph D.

Dilworth [Dilworth 1950] showed that for every transitive acyclic digraph D we
have π(D) = α(D). Note that this equality is not valid for any digraph; for example, if
D is a directed cycle with 5 vertices, then π(D) = 1 and α(D) = 2. However, Gallai and
Milgram [Gallai and Milgram 1960] have shown that π(D) ≤ α(D) for every digraph D.

Greene and Kleitman [Greene and Kleitman 1976] proved a generalization of Dil-
worth’s Theorem described next. Let k be a positive integer. The k-norm of a path par-
tition P , denoted by |P|k, is defined as |P|k =

∑
P∈P min{|P |, k}. We say that P is

a k-optimal path partition if there is no path partition P ′ such that |P ′|k < |P|k. We
denote by πk(D) the k-norm of a k-optimal path partition of D. A k-partial coloring
Ck is a set of k disjoint stable sets called color classes (empty color classes are allowed).
The weight of a k-partial coloring Ck, denoted by ||Ck||, is defined as ||Ck|| =

∑
C∈Ck |C|.

We say that Ck is an optimal k-partial coloring if there is no k-partial coloring Bk such
that ||Bk|| > ||Ck||. We denote by αk(D) the weight of an optimal k-partial coloring
of D. Given these definitions, what Greene and Kleitman [Greene and Kleitman 1976]
showed was that for every transitive acyclic digraph D, we have πk(D) = αk(D). Note
that π(D) = π1(D) and α(D) = α1(D). Thus, Dilworth’s Theorem is a particular case
of Greene-Kleitman’s Theorem in which k = 1.

As Gallai-Milgram’s Theorem extends Dilworth’s Theorem, it is a natural ques-
tion whether Greene-Kleitman’s Theorem can be extended to digraphs in general.
More precisely, is it true that for every digraph D we have that πk(D) ≤ αk(D)?
Linial [Linial 1981] conjectured that the answer for this question is positive.
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1Usually |P | denotes the length of a path (number of arcs), but here it denotes the number of vertices.
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Linial’s Conjecture [Linial 1981]. Let D be a digraph and k be a positive integer. Then,
πk(D) ≤ αk(D).

Linial’s Conjecture remains open, but we know it holds for acyclic di-
graphs [Saks 1979], bipartite digraphs [Berge 1982], digraphs which contain a Hamil-
tonian path [Berge 1982], k = 1 [Linial 1978], k = 2 [Berger and Hartman 2008] and
k ≥ λ(D) − 3 [Herskovics 2013]. In this paper we give partial results on Linial’s Con-
jecture for split digraphs.

2. Split digraphs
Let D be a digraph and let X ⊆ V (D). We denote by D[X] the subdigraph of D induced
by X . A digraph D is a split digraph if there is a partition of V (D) into two sets X and
Y , such that D[X] is a tournament and D[Y ] is a stable set. We shall use the notation
D[X, Y ] to indicate that D is a split digraph with such partition {X, Y }.

In this section we shall prove an approximation to Linial’s Conjecture for split
digraphs, i. e., that πk(D) ≤ αk(D)+1 for every split digraph D, as stated in Theorem 1.
For that, we need Rédei’s Theorem and Lemmas 1 and 2 below.

Rédei’s Theorem [Rédei 1934]. Every tournament contains a Hamiltonian path.

Lemma 1. Let D[X, Y ] be a split digraph. Then, πk(D) ≤ |Y |+min{|X|, k}.
Proof. By Rédei’s Theorem, the tournament D[X] contains a path P such that V (P ) =
X . Let P = {P} ∪ {(y) : y ∈ Y }. Clearly, P is a path partition of D for which
|P|k = min{|X|, k}+ |Y |. Therefore, πk(D) ≤ |P|k = min{|X|, k}+ |Y |. �

Lemma 2. Let D[X, Y ] be a split digraph. Then, αk(D) ≥ |Y | + min{|X|, k − 1}.
Moreover, when |X| < k, we have that αk(D) = |V (D)|.
Proof. First, suppose that |X| ≤ k − 1. Let Ck = {Y } ∪ {{x} : x ∈ X}. Note that
Ck is a k-partial coloring of D with ||Ck|| = |V (D)|. Therefore, αk(D) = ||Ck|| =
|Y |+ |X| = |Y |+min{|X|, k− 1} and the result follows. We may assume that |X| ≥ k.
Let Ck = {Y } ∪ {{x} : x ∈ S}, where S ⊆ X such that |S| = k − 1. Clearly, Ck

is a k-partial coloring for which ||Ck|| = |Y | + k − 1. Therefore, αk(D) ≥ ||Ck|| =
|Y |+ k − 1 = |Y |+min{|X|, k − 1}. �

Theorem 1. Let D[X, Y ] be a split digraph. Then, πk(D) ≤ αk(D) + 1.
Proof. The result follows immediately from Lemmas 1 and 2. �

In Section 2.1 we introduce k-loose digraphs and show that Linial’s Conjecture
holds for them and in Section 2.2 we show that it holds for spider digraphs [Hoàng 1985].

2.1. k-loose digraphs

A split digraph D[X, Y ] is k-loose if either |X| < k or there is a S ⊆ X such that |S| = k
and no vertex y ∈ Y is adjacent to every vertex in S. A split digraph D[X, Y ] that is not
k-loose is called k-tight. We show in this section that Linial’s Conjecture holds for every
k-loose digraph (Theorem 2) and for split digraphs such that |X| ≤ k (Theorem 3). For
that, we need Lemmas 3 and 4 below.

Lemma 3. Let D[X, Y ] be a split digraph. Then, D is k-loose if and only if αk(D) ≥
|Y |+min{|X|, k}.
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Proof. Consider that D is k-loose. If |X| < k, then by Lemma 2, αk(D) = |V (D)| =
|Y | + |X| ≥ |Y | +min{|X|, k}. We may thus assume that |X| ≥ k and there is S ⊆ X
such that |S| = k and no vertex y ∈ Y is adjacent to every vertex in S. Assume S =
{x1, x2, . . . , xk} and let Ck

0 = {C1, C2, . . . , Ck} be a k-partial coloring where Ci = {xi}
for i = 1, 2, . . . , k. For each y ∈ Y choose some vertex xi not adjacent to y (which exists
by definition) and add y in color class Ci. The k-partial coloring Ck thus obtained has
weight |Y |+ k = |Y |+min{|X|, k} as expected.

Conversely, consider that αk(D) ≥ |Y | + min{|X|, k}. If |X| < k, then D is k-
loose by definition. So, we may assume that |X| ≥ k and, whence, αk(D) ≥ |Y |+k. We
conclude that Ck must have exactly k vertices of X , besides all |Y | vertices from Y . Let
S = {x : x ∈ Ci ∩X for i = 1, 2, . . . , k}. Since all vertices of Y belong to Ck, then there
is no vertex in Y which is adjacent to every vertex of S. Therefore, D is k-loose. �

Theorem 2. Let D[X, Y ] be a k-loose split digraph. Then, πk(D) ≤ αk(D).
Proof. By Lemma 3, αk(D) ≥ |Y | + min{|X|, k}. On the other hand, by Lemma 1
πk(D) ≤ |Y |+min{|X|, k} and the result follows. �

Lemma 4. Let D[X, Y ] be a split digraph such that λ(D) > |X|. Then, πk(D) ≤ αk(D).
Proof. If αk(D) = |V (D)|, then the result follows trivially. Thus, we may assume
that αk(D) < |V (D)|. By Lemma 2 we have that |X| ≥ k and also that αk(D) ≥
|Y |+min{|X|, k− 1} = |Y |+k− 1. Since λ(D) > |X|, there exists a path P in D such
that |P | = |X| + 1. Let P = {P} ∪ {(v) : v /∈ V (P )}. Clearly, P is a path partition of
D and |P|k = |Y |+ k − 1. Therefore, πk(D) ≤ |P|k ≤ αk(D). �

Theorem 3. Let D[X, Y ] be a split digraph such that |X| ≤ k. Then, πk(D) ≤ αk(D).
Proof. If D is k-loose, then the result follows by Theorem 2. So, we may assume that
D is not k-loose. Hence, |X| = k and there exists a vertex y ∈ Y which is adjacent to
every vertex of X . Therefore, D[X ∪{y}] is a tournament and by Rédei’s Theorem it has
a Hamiltonian path P such that |P | = |X|+ 1. As P is a path in D as well, we conclude
that λ(D) ≥ |X|+ 1 and the result follows by Lemma 4. �

2.2. Spider digraphs
We denote by N(v) the set of vertices that are adjacent to v ∈ V (D) (regardless
the direction of the arcs). A split digraph D[X, Y ] is spider [Hoàng 1985] if (i)
|X| = |Y | ≥ 2; and (ii) there exists a bijective function f : X → Y such that
either N(x) = {f(x)} for all x ∈ X (in this case, we say that D is a thin spider) or
N(x) = Y − f(x) for all x ∈ X (in this case, we say that D is a thick spider). Note
that thin spider digraphs are k-loose, but thick spider digraphs are k-tight, as long as
|X| > k. The following theorem shows that Linial’s Conjecture holds for spider digraphs.

Theorem 4. Let D[X, Y ] be a spider digraph. Then, πk(D) ≤ αk(D).
Proof. Let 
 = |X| = |Y |. If 
 ≤ k, then the result follows by Theorem 3. Thus, we
may assume that |X| > k. Clearly, πk(D) ≤ |V (D)| and we deduce that αk < |V (D)|. If
D is a thin spider digraph, whence k-loose, the result follows by Theorem 2. Therefore,
we may assume that D is a thick spider graph. Since D[X] is a tournament, by Rédei’s
Theorem, there exists a path P such that V (P ) = X . Let P = (x1, x2, . . . , x�). Since D
is a thick spider digraph, there exists one single vertex yi ∈ Y that is not adjacent to xi,
for i = 1, . . . , 
. Note that if λ(D) > |X|, then the result follows by Lemma 4. So we
may assume that λ(D) ≤ |X|.
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Let Pxi denote the subpath (x1, x2, . . . , xi) and let xiP denote the subpath
(xi, xi+1, . . . , x�). We denote by W ◦Q the concatenation of two paths W and Q.

Claim 1: If xi ∈ X , yj ∈ Y and i < j, then (xi, yj) ∈ A(D).
We prove this claim by induction on i. If i = 1, assume by contradiction that (yj, x1) ∈
A(D); then P ′ = (yj, x1) ◦ P is a path in D such that |P ′| = |X| + 1, a contradiction.
Hence, (x1, yj) ∈ A(D). Consider now i > 1. Recall that yj is adjacent to every vertex
in X − {xj}. Thus, yj is adjacent to every vertex of V (Pxi). By induction hypothesis,
we have (xi−1, yj) ∈ A(D). Suppose by contradiction that (yj, xi) ∈ A(D). Then, there
is a path P ′ = Pxi−1 ◦ (xi−1, yj, xi) ◦ xiP such that |P ′| = |X| + 1, a contradiction.
Therefore, (xi, yj) ∈ A(D). This completes the proof of Claim 1.

Claim 2: If xi ∈ X , yj ∈ Y and j < i, then (yj, xi) ∈ A(D).
We omit the proof of Claim 2, as it is analogous to that of Claim 1.

We claim that both P0 = (x1, y2, x3, y4, . . .) and P1 = (y1, x2, y3, x4, . . .) are
paths in D. By Claim 1 we have that (xi, yi+1) ∈ A(D) for i = 1, 3, . . ., and by Claim
2 we have that (yj, xj+1) ∈ A(D) for j = 2, 4, . . .. Hence P0 is a path in D. The
proof is analogous for P1. Clearly, P = {P0, P1} is a path partition of D. Moreover,
|P0| = |P1| = � and |P|k = 2min{�, k} = 2k. Since |X| > k, we have that min{�, k} =
k ≤ |X|− 1 = |Y |− 1. Thus, |P|k = 2k ≤ k+ |Y |− 1. On the other hand, by Lemma 2,
αk(D) ≥ |Y | + min{|X|, k − 1} = |Y | + k − 1. Therefore, πk(D) ≤ |P|k = 2k ≤
|Y |+ k − 1 ≤ αk(D). �

3. Conclusion
We showed that Linial’s Conjecture holds for k-loose digraphs and for some subclasses
of k-tight digraphs, namely those with |X| = k and the thick spider digraphs. It is easy to
see that for k-tight digraphs, αk(D) = |Y |+k−1. Therefore, it is clear that any approach
to prove Linial’s Conjecture for k-tight digraphs must involve finding a path partition with
k-norm less than or equal to |Y |+ k − 1. We are currently working on this idea.
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