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Abstract. Descriptive Complexity deals with the relationship between logical
definability and computational complexity on finite structures. As an example
in the case of probabilistic complexity classes, we have that BPP is equivalent
to the class of problems definable by a randomised inflationary fixed-point logic
with counting BPIFP(C ). In this paper, we show that we can define logics
with generalized second order quantifiers equivalent to probabilistic complex-
ity classes. This quantifiers are used to simulate the behavior of probabilistic
Turing machines.

Resumo. Complexidade Descritiva lida com a relação entre definibilidade
lógica e complexidade computational em estruturas finitas. Como exemplo no
caso de classes de complexidade probabilı́sticas, temos que BPP é equivalente
à classe de problemas definı́veis por uma versão randômica da lógica de ponto-
fixo inflacionário com contagem BPIFP(C ). Neste artigo, nós mostramos
que podemos definir lógicas com quantificadores generalizados de segunda or-
dem equivalentes à classes de complexidade probabilı́sticas. Estes quantifi-
cadores são usados para simular o comportamento de máquinas de Turing prob-
abilı́sticas.

1. Introduction
Descriptive Complexity [Grädel et al. 2005] characterize the complexity of a problem
based on a logical language needed to express it rather than physical measures such as
time and space. We say that a logic L captures a complexity class C if L express all
and only the problems of this class. In [Eickmeyer 2011], probabilistic logics BPFO and
BPIFP(C ) are defined and they capture probabilistic complexity classes BPAC 0 and
BPP , respectively.

Our contribution is to define logics with generalized second order quantifiers and
without randomisation and show that they are strong enough to capture probabilistic com-
plexity class. The approach is to use second order quantifiers to simulate the behavior of
randomised algorithms for problems in these classes. We demonstrate this by showing
that our logics with generalized second order quantifiers are equivalent to randomised
logics defined in the framework of [Eickmeyer 2011].



789

ETC - 1º Encontro de Teoria da Computação

Descriptive Complexity of Probabilistic Complexity Classes
through Second Order Generalized Quantifiers

Thiago Alves Rocha1,2, Ana Teresa Martins2

1Departamento de Computação
Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE)
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Caixa Postal 6.021 – 60.455-970 – Fortaleza – CE – Brazil

thiago.alves@ifce.edu.br, ana@lia.ufc.br

Abstract. Descriptive Complexity deals with the relationship between logical
definability and computational complexity on finite structures. As an example
in the case of probabilistic complexity classes, we have that BPP is equivalent
to the class of problems definable by a randomised inflationary fixed-point logic
with counting BPIFP(C ). In this paper, we show that we can define logics
with generalized second order quantifiers equivalent to probabilistic complex-
ity classes. This quantifiers are used to simulate the behavior of probabilistic
Turing machines.

Resumo. Complexidade Descritiva lida com a relação entre definibilidade
lógica e complexidade computational em estruturas finitas. Como exemplo no
caso de classes de complexidade probabilı́sticas, temos que BPP é equivalente
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plexity class. The approach is to use second order quantifiers to simulate the behavior of
randomised algorithms for problems in these classes. We demonstrate this by showing
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2. Probabilistic Complexity Classes
We assume basic knowledge of computational complexity classes as P and NP , Turing
Machines and languages. In order to investigate probabilistic algorithms, we may for-
mally introduce probabilistic Turing machines as in [Arora and Barak 2009].
Definition 1 (Probabilistic Turing Machine). A probabilistic Turing machine (PTM) is a
Turing machine with two transition functions δ0, δ1. To execute a PTM M on an input
x, we choose in each step with probability 1/2 which transition function to use. For a
function T : N → N , we say that M runs in T (n)-time if for any input x, M halts on x
within T (|x|) steps regardless of the random choices it makes.

Bellow, we have the class BPP that aims to capture efficient probabilistic compu-
tation.
Definition 2 (BPP ). The class BPP (Bounded Error Probability) contains all languages
L for which there is a probabilistic Turing machine M polynomially bounded in time with
the following property: for all inputs w, if w ∈ L, then Pr[M(x) = 1] ≥ 2/3 and if
w �∈ L, then Pr[M(x) = 0] ≥ 2/3.

Note that the PTM in the previous definition satisfies a very strong property: For
every input, it either accepts it with probability at least 2/3 or rejects it with probability
at least 2/3. Since a deterministic TM is a special case of a PTM (where both transition
functions are equal), we have that P ⊆ BPP while it is not known whether BPP ⊆ NP .

3. Randomised Logics
For a τ -structure A, we denote the class of all (τ ∪ ρ)-expansions of A by χ(A, ρ).
We can view χ(A, ρ) as a probability space with the uniform distribution. A structure
B ∈ χ(A, ρ) can be seen as a (τ ∪ ρ)-structure such that for all k-ary R ∈ ρ and all tuples
(a1, ..., ak) in the domain of A we can decide whether (a1, ..., ak) ∈ R with probability 1

2
.

Definition 3. Let L be a logic and 0 ≤ α ≤ β ≤ 1. A formula φ ∈ L[τ ∪ ρ] has a
(α, β]-gap if for all τ -structures A

PrB∈χ(A,ρ)(B |= φ) ≤ α or PrB∈χ(A,ρ)(B |= φ) > β.
Definition 4. Let L be a logic and 0 ≤ α ≤ β ≤ 1. The logic P(α,β]L is defined as
follows: for each vocabulary τ ,

P(α,β]L[τ ] =
⋃

ρ{φ ∈ L[τ ∪ ρ] | φ has a (α, β]-gap},

where the union ranges over all vocabularies ρ disjoint from τ . Let φ ∈ P(α,β]L[τ ], the
semantics is defined bellow:

A |= φ if and only if PrB∈χ(A,ρ)(B |= φ) > β.

To finish, let BPL = P(1/3,2/3]L and define the randomised logics BPFO and
BPIFP(C ) using Definition 4 such that FO stands for First-Order Logic and IFP(C )
stands for Inflationary Fixed-Point with Counting [Eickmeyer 2011].

4. Descriptive Complexity
The Descriptive Complexity [Grädel et al. 2005] deals with the relationship between log-
ical definability and computational complexity on finite structures. While the compu-
tational complexity is interested with the cost of computational resources, as time and
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space, to decide if structures in a class have a certain property, the Descriptive Complex-
ity is concerned with the logical expression of this property.

We are concerned with the results which states that a logic L captures a complexity
class C on class of structures D (notation L = C). It means that the L-definable properties
of structures in D are precisely those that are decidable in C. The definition of L = C is
introduced by the following two definitions [Grädel et al. 2005].
Definition 5 (L ⊆ C). Let L be a logic, D a domain of finite structures, and C a compu-
tational complexity class. The logic L is in C on D if, for every fixed vocabulary τ and
fixed sentence φ ∈ L(τ), the complexity of evaluating φ on D(τ) is a problem in C.
Definition 6 (C ⊆ L). Let L be a logic, D a domain of finite structures, and C a com-
putational complexity class. C is in L on D if, for every model class K ⊆ D(τ) such
that the membership problem is in C, there is a sentence φ ∈ L(τ) such that K =
{A ∈ D(τ)|A |= φ}.

Below, we state and briefly explain some results of Descriptive Complexity that
will be used in this work. The next result is the seminal theorem of the Descriptive
Complexity area.
Theorem 1 (Fagin’s Theorem). SO∃ = NP .

Using this result, we can define any NP problem in a formula of SO∃. For in-
stance, the formula

φ3color = ∃R∃B∃G∀x((R(x) ∨G(x) ∨ B(x)) ∧ ∀y(E(x, y) →
(¬(R(x) ∧R(y)) ∧ ¬(G(x) ∧G(y)) ∧ (B(x) ∧ B(y))))).

define the class of graphs that are 3-colorable, i.e., a graph G satisfies φ3color if and only if
G is 3-colorable. Three colorability of graphs is an NP -complete problem. For the case
of probabilistic complexity classes, [Eickmeyer 2011] has the following results:
Theorem 2 ([Eickmeyer 2011]). BPFO = BPAC 0 .

where AC 0 is a complexity class of problems that are recognized by a family of Boolean
circuits (Cn)n≥1 such that each circuit Cn has n inputs, one output and the total number
of gates is polynomially bounded by n. Besides that, there is a d > 1 such that all circuits
Cn have depth at most d and we can test whether a circuit C ∈ (Cn)n≥1 in dlogtime.
BPAC 0 is defined similarly as BPP .
Theorem 3 ([Eickmeyer 2011]). BPIFP(C ) = BPP .

5. Logics with Generalized Quantifiers
Generalized quantifiers are generalizations of standard quantifiers ∃ and ∀. A general way
of defining generalized quantifiers that quantify over second order variables is introduced
in [Andersson 2002]. For example, we can define a new quantifier Qk

> 1
2

:

Qk
> 1

2

= {〈A,P 〉 |P ⊆ P(Ak) and |P | > 2|A|k−1}.

Now we can define a logic L(Qk
> 1

2

) adding formulas of the form Qk
> 1

2

Xkϕ(X)

for ϕ(X) ∈ L. For instance, we can define FO(Qk
> 1

2

) adding the following case in the
semantics of FO:

A |= Qk
> 1

2

Xkϕ(X) if and only if |{R ∈ P(Ak)|A |= ϕ(R)}| > 2|A|k−1.
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> 1
2

:

Qk
> 1

2

= {〈A,P 〉 |P ⊆ P(Ak) and |P | > 2|A|k−1}.

Now we can define a logic L(Qk
> 1

2

) adding formulas of the form Qk
> 1
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semantics of FO:
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> 1

2

Xkϕ(X) if and only if |{R ∈ P(Ak)|A |= ϕ(R)}| > 2|A|k−1.

Now we show that we can define logics with generalized second order quan-
tifiers equivalent to randomized logics Pα,βL. Let L be a logic. First, we define
GL((Qk

≤α)k≥1, (Qk
>β)k≥1) as

GL((Qk
≤α)k≥1, (Qk

>β)k≥1) = {Qk
>βXϕ(X) | k ≥ 1, ϕ(X) ∈ L and for all structures A,

we have A |= Qk
>βXϕ(X) or A |= Qk

≤αXϕ(X)}.

Now we can show the equivalence:
Theorem 4. Let 0 ≤ α ≤ β ≤ 1. GL((Qk

≤α)k≥1, (Qk
>β)k≥1) is equivalent to P(α,β]L.

Proof. Let τ be a vocabulary, Qk
>βXϕ(X) ∈ GL((Qk

≤α)k≥1, (Qk
>β)k≥1) and A a τ -

structure. We have that ϕ(X) ∈ L[τ ∪ {X}], thus

PB∈χ(A,ρ)(B |= ϕ(X)) = |{B∈χ(A,ρ)|B|=ϕ(X)}|
{B|B∈χ(A,ρ)} = |{X∈P(Ak)|(A,X)|=ϕ(X)}|

2|A|k .

A |= Qk
>βXϕ(X) iff |{R ∈ P(Ak) | (A, R) |= ϕ(R)}| > β × 2|A|k iff

|{R∈P(Ak)|(A,R)|=ϕ(R)}|
2|A|k > β iff PB∈χ(A,ρ)(B |= ϕ(X)) > β.

A |= Qk
≤αXϕ(X) iff |{R ∈ P(Ak) | (A, R) |= ϕ(R)}| ≤ α × 2|A|k iff

|{R∈P(Ak)|(A,R)|=ϕ(R)}|
2|A|k ≤ α iff PB∈χ(A,ρ)(B |= ϕ(X)) ≤ α.

6. Capturing Results and Future Work
From Theorem 4, we can obtain the following results:
Theorem 5. GFO((Qk

≤1/3)k≥1, (Qk
>2/3)k≥1) = BPAC 0 .

Theorem 6. GIFP(C )((Qk
≤1/3)k≥1, (Qk

>2/3)k≥1) = BPP .

For future work, we want to define logics with second order generalized quanti-
fiers to capture probabilistic exponential time classes.
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