
XXXVI Congresso da Sociedade Brasileira de Computação

804

Achieving CCA1-security in homomorphic encryption

Eduardo Morais1, Diego F. Aranha1, Ricardo Dahab1

1Institute of Computing – University of Campinas (Unicamp)

{dfaranha, rdahab}@ic.unicamp.br, emorais@lasca.ic.unicamp.br

Abstract. This paper proposes the combination of homomorphic encryption and
verifiable computation to avoid key recovery attacks and achieve CCA1-secure
constructions of Somewhat Homomorphic Encryption (SHE) schemes described
in the literature. We also provide concrete parameters, based on the best-
attack analysis, concluding that the AGCD [van Dijk et al. 2010] family of SHE
schemes may be the best implementation choice under certain circumstances.

Resumo. Este artigo propõe a combinação de encriptação homomórfica
e computação verificável para evitar ataques de recuperação de chaves
e obter segurança CCA1 em construções de esquemas parcialmente ho-
momórficos descritos na literatura. Além disso, são propostos parâmetros
concretos, baseados na análise do melhor ataque, concluindo que a famı́lia
AGCD [van Dijk et al. 2010] de esquemas SHE pode ser consideradas a mel-
hor escolha em determinadas circunstâncias.

1. Introduction

Homomorphic encryption has been a topic of great interest for the Cryptology community
over the last few years, since Craig Gentry’s breakthrough in 2009 [Gentry 2009]. Al-
though Fully Homomorphic Encryption (FHE) is yet to become practical, SHE schemes
can be used to construct practical applications. An important drawback, however, is the
fact that all but one of the SHE schemes described in the literature are susceptible to key
recovery attacks, a concrete threat in many scenarios. In this work, we investigate how
verifiable computation can be combined with homomorphic encryption in order to avoid
key recovery attacks. Indeed, we show that it is possible to achieve CCA1-security for
homomorphically evaluating quadratic multivariate polynomials.

1.1. Homomorphic encryption

Informally, homomorphic encryption provides the possibility of having a pair of encryp-
tion and decryption functions, ENC, DEC, that allows the computation of a function f on
an encrypted text c, such that DEC(f(c)) = f(m), where c = ENC(m). That is, allowing
functions to be computed on encrypted texts without the need for decrypting them first.
The following two definitions formalize this notion.



805

ETC - 1º Encontro de Teoria da Computação

Achieving CCA1-security in homomorphic encryption

Eduardo Morais1, Diego F. Aranha1, Ricardo Dahab1

1Institute of Computing – University of Campinas (Unicamp)

{dfaranha, rdahab}@ic.unicamp.br, emorais@lasca.ic.unicamp.br

Abstract. This paper proposes the combination of homomorphic encryption and
verifiable computation to avoid key recovery attacks and achieve CCA1-secure
constructions of Somewhat Homomorphic Encryption (SHE) schemes described
in the literature. We also provide concrete parameters, based on the best-
attack analysis, concluding that the AGCD [van Dijk et al. 2010] family of SHE
schemes may be the best implementation choice under certain circumstances.

Resumo. Este artigo propõe a combinação de encriptação homomórfica
e computação verificável para evitar ataques de recuperação de chaves
e obter segurança CCA1 em construções de esquemas parcialmente ho-
momórficos descritos na literatura. Além disso, são propostos parâmetros
concretos, baseados na análise do melhor ataque, concluindo que a famı́lia
AGCD [van Dijk et al. 2010] de esquemas SHE pode ser consideradas a mel-
hor escolha em determinadas circunstâncias.

1. Introduction

Homomorphic encryption has been a topic of great interest for the Cryptology community
over the last few years, since Craig Gentry’s breakthrough in 2009 [Gentry 2009]. Al-
though Fully Homomorphic Encryption (FHE) is yet to become practical, SHE schemes
can be used to construct practical applications. An important drawback, however, is the
fact that all but one of the SHE schemes described in the literature are susceptible to key
recovery attacks, a concrete threat in many scenarios. In this work, we investigate how
verifiable computation can be combined with homomorphic encryption in order to avoid
key recovery attacks. Indeed, we show that it is possible to achieve CCA1-security for
homomorphically evaluating quadratic multivariate polynomials.

1.1. Homomorphic encryption

Informally, homomorphic encryption provides the possibility of having a pair of encryp-
tion and decryption functions, ENC, DEC, that allows the computation of a function f on
an encrypted text c, such that DEC(f(c)) = f(m), where c = ENC(m). That is, allowing
functions to be computed on encrypted texts without the need for decrypting them first.
The following two definitions formalize this notion.

Definition 1.1. Correctness. A scheme E(KEYGEN, DEC, ENC, EVAL) is correct
if, for a determined circuit C and every key pair (sk,pk), where sk is the pri-
vate key and pk is the public key generated by KEYGEN, any message tuple
m = 〈m1, . . . ,mt〉 and corresponding ciphertexts c = 〈c1, . . . , ct〉, that is, ci =
ENCpk(mi) for 1 ≤ i ≤ t, then we have that

DECsk(EVALpk(C, c)) = C(m).

Furthermore, algorithms KEYGEN, DEC, ENC and EVAL must have polynomial
complexity.

Definition 1.2. Fully Homomorphic Encryption. A scheme E is correct for a class
SC of circuits, if it is correct for each C ∈ SC. Moreover, E is denominated fully
homomorphic if it is correct for every algebraic circuit, or, equivalently, if it is correct
for every Boolean circuit.

SHE schemes corresponds to homomorphic encryption schemes that are correct
for circuits whose multiplicative depth is limited by a certain upper bound, denoted by �.

1.2. Security model

We say that a cryptosystem is secure against chosen ciphertext attacks (CCA2) if there
is no polynomial time adversary that can win the following game with non-negligible
probability.

Setup. The challenger obtains (sk,pk) = KEYGEN(λ), where λ is a security
parameter, and sends pk to the adversary A.

Queries. A sends ciphertexts to the challenger, before or after the challenge, who
returns the corresponding plaintexts.

Challenge. The adversary randomly generates two plaintexts m0,m1 ∈ M and
sends to the challenger, who then randomly chooses a bit b ∈ {0, 1} and computes the
ciphertext c = ENCpk(mb). The challenger sends c to A.

Answer. A sends a bit b′ to the challenger and wins the game if b′ = b.

If we allow queries only before the challenge, we say that the cryptosystem is se-
cure against CCA1 adversaries (lunchtime attacks). Queries can be interpreted as accesses
to a decryption oracle. If, instead, we only allow access to an encryption oracle, namely
the adversary can choose any message to be encrypted under the same key pair, then
we say that the cryptosystem is secure against chosen plaintext attacks (CPA). Clearly,
resistance to CCA2 attacks are the most desirable.

In homomorphic encryption, it is impossible to achieve CCA2 security, because
the adversary can simply add to the encrypted message some encryption of zero, which
can be obtained by querying the encryption oracle, and send it back to the decryption ora-
cle. Many FHE schemes have as public value an encryption of the private key bits, which
can be sent to the decryption oracle before the challenge, making such schemes insecure
against CCA1 adversaries. Indeed, a key recovery attack is stronger than a CCA1 attack;



XXXVI Congresso da Sociedade Brasileira de Computação

806

also, Loftus et al [Loftus et al. 2011] showed that Gentry’s construction over ideal lattices
is vulnerable to key recovery attacks and presented the only somewhat homomorphic en-
cryption scheme that is known to be CCA1-secure.

In 2015, Dahab, Galbraith and Morais showed that the NTRU-based family of
SHE schemes is vulnerable to key recovery attacks [Dahab et al. 2015]. Hence, except
for Loftus et al’s [Loftus et al. 2011] scheme, no other known SHE proposal achieves
CCA1 security.

1.3. Homomorphic verifiable computation

Although homomorphic encryption is a very flexible cryptographic primitive, when ap-
plied to the cloud computing scenario, it lacks an important property: the ability to verify
if a given homomorphic computation corresponds to what the client desired. A verifi-
able computation scheme could solve this problem, provided two requirements are met.
First, the cloud must not spend much more time to perform the verifiable computation
when compared to the non-verifiable solution. Second, the client must be able to ver-
ify the result faster than the time it takes to perform the entire computation by himself.
There are proposals [Gennaro et al. 2010, Chung et al. 2010] that use homomorphic en-
cryption to construct a verifiable scheme, because it is possible to offer input and output
privacy, since both are encrypted. However, the underlying security model does not allow
verification queries. Recently, Fiore, Gennaro and Pastro [Fiore et al. 2014] proposed a
new construction that does allow verification queries, improving on the security model.
They showed how to solve practical problems, such as computing quadratic multivariate
polynomials over encrypted data, which can be used to homomorphically compute statis-
tical functions. We remark that this application requires only one level of multiplications,
which is an important characteristic to be considered in order to calculate the parameters
of the underlying SHE scheme.

Definition 1.3. A verifiable computation scheme VC is defined by the algorithms
(KEYGEN, PROBGEN, COMPUTE, VERIFY), as follows:

Key generation. Algorithm KEYGEN(1λ, f) generates secret key sk and
evaluation key esk.

Problem generation. Using secret key sk, algorithm PROBGEN receives as
input ciphertext ci and computes the corresponding authentication tag σi, such that
σi = AUTHvk(ci, (·, i)).

Verification. Given the secret sk, tag σ and ciphertext c, we have that
VERIFYsk(σ, c) returns 1 if c = f([ci]) and σ = AUTHvk(c, (·, i)). Otherwise, it
returns 0.

Evaluation. Given σ1, . . . , σt and the description of function f , algorithm
COMPUTEesk([σi],∆, f) returns the authentication tag σ that corresponds to the ci-
phertext c = EVALedk([ci], f) obtained by running the EVAL algorithm from the
underlying homomorphic encryption scheme. We say that the VC scheme is correct if
VERIFYsk(σ, c) outputs 1.



807

ETC - 1º Encontro de Teoria da Computação

also, Loftus et al [Loftus et al. 2011] showed that Gentry’s construction over ideal lattices
is vulnerable to key recovery attacks and presented the only somewhat homomorphic en-
cryption scheme that is known to be CCA1-secure.

In 2015, Dahab, Galbraith and Morais showed that the NTRU-based family of
SHE schemes is vulnerable to key recovery attacks [Dahab et al. 2015]. Hence, except
for Loftus et al’s [Loftus et al. 2011] scheme, no other known SHE proposal achieves
CCA1 security.

1.3. Homomorphic verifiable computation

Although homomorphic encryption is a very flexible cryptographic primitive, when ap-
plied to the cloud computing scenario, it lacks an important property: the ability to verify
if a given homomorphic computation corresponds to what the client desired. A verifi-
able computation scheme could solve this problem, provided two requirements are met.
First, the cloud must not spend much more time to perform the verifiable computation
when compared to the non-verifiable solution. Second, the client must be able to ver-
ify the result faster than the time it takes to perform the entire computation by himself.
There are proposals [Gennaro et al. 2010, Chung et al. 2010] that use homomorphic en-
cryption to construct a verifiable scheme, because it is possible to offer input and output
privacy, since both are encrypted. However, the underlying security model does not allow
verification queries. Recently, Fiore, Gennaro and Pastro [Fiore et al. 2014] proposed a
new construction that does allow verification queries, improving on the security model.
They showed how to solve practical problems, such as computing quadratic multivariate
polynomials over encrypted data, which can be used to homomorphically compute statis-
tical functions. We remark that this application requires only one level of multiplications,
which is an important characteristic to be considered in order to calculate the parameters
of the underlying SHE scheme.

Definition 1.3. A verifiable computation scheme VC is defined by the algorithms
(KEYGEN, PROBGEN, COMPUTE, VERIFY), as follows:

Key generation. Algorithm KEYGEN(1λ, f) generates secret key sk and
evaluation key esk.

Problem generation. Using secret key sk, algorithm PROBGEN receives as
input ciphertext ci and computes the corresponding authentication tag σi, such that
σi = AUTHvk(ci, (·, i)).

Verification. Given the secret sk, tag σ and ciphertext c, we have that
VERIFYsk(σ, c) returns 1 if c = f([ci]) and σ = AUTHvk(c, (·, i)). Otherwise, it
returns 0.

Evaluation. Given σ1, . . . , σt and the description of function f , algorithm
COMPUTEesk([σi],∆, f) returns the authentication tag σ that corresponds to the ci-
phertext c = EVALedk([ci], f) obtained by running the EVAL algorithm from the
underlying homomorphic encryption scheme. We say that the VC scheme is correct if
VERIFYsk(σ, c) outputs 1.

2. Main contributions
Here we list the main contributions of this work:

• the combination of verifiable computation and homomorphic encryption in order
to avoid key recovery attacks and achieve CCA1-security. This is relevant because
almost every SHE scheme in the literature is vulnerable to CCA1 attacks, which
are a feasible scenario in cloud computing;

• the comparison of AGCD-based [van Dijk et al. 2010] and BGV-
based [Brakerski et al. 2011] SHE schemes for a specific scenario, where
we can homomorphically evaluate quadratic multivariate polynomials. In general,
BGV is considered the best choice for the implementation of somewhat homo-
morphic encryption; in this particular case, however, the AGCD scheme, which is
simpler, also offers better performance in practice;

• the proposal of concrete parameters for a specific multiplicative depth to be secure
against the attacks described in the literature, based on the utilization of some
variation of the LLL algorithm.

References
Brakerski, Z., Gentry, C., and Vaikuntanathan, V. (2011). Fully homomorphic encryption

without bootstrapping. Electronic Colloquium on Computational Complexity (ECCC),
18:111.

Chung, K., Kalai, Y., and Vadhan, S. (2010). Improved delegation of computation using
fully homomorphic encryption. In Rabin, T., editor, Advances in Cryptology - CRYPTO
2010, volume 6223 of Lecture Notes in Computer Science, pages 483–501. Springer
Berlin Heidelberg.

Dahab, R., Galbraith, S., and Morais, E. (2015). Adaptive key recovery attacks on NTRU-
based somewhat homomorphic encryption schemes. In Lehmann, A. and Wolf, S.,
editors, Information Theoretic Security, volume 9063 of Lecture Notes in Computer
Science, pages 283–296. Springer International Publishing.

Fiore, D., Gennaro, R., and Pastro, V. (2014). Efficiently verifiable computation on
encrypted data. Cryptology ePrint Archive, Report 2014/202. http://eprint.
iacr.org/.

Gennaro, R., Gentry, C., and Parno, B. (2010). Non-interactive verifiable computing:
Outsourcing computation to untrusted workers. In Rabin, T., editor, Advances in Cryp-
tology - CRYPTO 2010, volume 6223 of Lecture Notes in Computer Science, pages
465–482. Springer Berlin Heidelberg.

Gentry, C. (2009). Fully homomorphic encryption using ideal lattices. In STOC ’09:
Proceedings of the 41st annual ACM symposium on Theory of computing, pages 169–
178, New York, NY, USA. ACM.

Loftus, J., May, A., Smart, N. P., and Vercauteren, F. (2011). On CCA-secure somewhat
homomorphic encryption. In In Selected Areas in Cryptography, pages 55–72.

van Dijk, M., Gentry, C., Halevi, S., and Vaikuntanathan, V. (2010). Fully homomorphic
encryption over the integers. In Proceedings of the 29th Annual International Con-
ference on Theory and Applications of Cryptographic Techniques, EUROCRYPT’10,
pages 24–43, Berlin, Heidelberg. Springer-Verlag.


