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Abstract. A graceful labelling of a tree T is an injective function f :V (T ) →
{0, 1, . . . , |E(T )|} such that {|f(u)−f(v)|: uv ∈ E(T )} = {1, 2, . . . , |E(T )|}.
A tree T is said to be 0-rotatable if, for any v ∈ V (T ), there exists a graceful
labelling f of T such that f(v) = 0. In this work, it is proved that the follow-
ing families of caterpillars are 0-rotatable: caterpillars with perfect matching;
caterpillars obtained by identifying a central vertex of a path Pn with a vertex
of K2; caterpillars obtained by identifying one leaf of the star K1,s−1 to a leaf
of Pn, with n ≥ 4 and s ≥ �n−1

2
�; caterpillars with diameter five or six; and

some families of caterpillars with diameter at least seven. This result reinforces
the conjecture that all caterpillars with diameter at least five are 0-rotatable.

1. Introduction
Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). A grace-
ful labelling of G is an injection f :V (G) → {0, 1, . . . , |E(G)|} such that {|f(u) −
f(v)|: uv ∈ E(G)} = {1, 2, . . . , |E(G)|}. We say that G is graceful if it has a grace-
ful labelling.

In 1967, Rosa introduced four types of labellings of graphs, including graceful
labellings, and posed the Graceful Tree Conjecture which states that all trees are grace-
ful [Rosa 1967]. Rosa proved that the Graceful Tree Conjecture is a strenghtened version
of the well-known Ringel-Kotzig Conjecture which states that the complete graph K2m+1

has a cyclic decomposition into subgraphs isomorphic to a given tree T with m edges.
The Graceful Tree Conjecture is a very important open problem in Graph Theory, with
more than a thousand papers about it [Gallian 2015].

As soon as one starts investigating graceful labellings of trees, it becomes clear the
importance of knowing how to construct graceful labellings with the label 0 appearing in
a given vertex. The importance of label 0 in a graceful labelling of a tree T is due to the
fact that it is easy to grow T by adding k new leaves to the 0-labelled vertex and expand
the graceful labelling by assigning labels |E(T )|+1, . . . , |E(T )|+k to these new leaves.
A tree T is 0-rotatable if, for any v ∈ V (T ), there exists a graceful labelling f of T such
that f(v) = 0.

The importance of 0-rotatability of trees was first noted by Rosa in his seminal
paper [Rosa 1967], in which the author stated, without proof, that all paths are 0-rotatable.
Ten years later, the author published a proof of this result [Rosa 1977]. Meanwhile, in
1969, some examples of non 0-rotatable trees were discovered [Gallian 2015]. As an
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Ten years later, the author published a proof of this result [Rosa 1977]. Meanwhile, in
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example, the smallest non 0-rotatable tree is the tree obtained by identifying one leaf of
the star K1,3 to a leaf of P3. Posteriorly, Chung and Hwang investigated the 0-rotatability
of a product of trees called ∆-construction and proved that if two trees T1 and T2 are 0-
rotatable, then their product T1∆T2 is also 0-rotatable [Chung and Hwang 1981]. In 2004,
Bussel [Bussel 2004] showed that all trees with diameter at most three are 0-rotatable.
The author also showed that there exist non 0-rotatable trees with diameter four. In fact,
he completely characterized the diamater-four non 0-rotatable trees using the following
result.

Theorem 1 ([Bussel 2004]). Let T be a tree of diameter four such that its center v has
degree two. Let v1, v2 be the vertices adjacent to v and m1,m2 be the number of leaves
adjacent to v1, v2, respectively. Assume m1 ≥ m2. The tree T has a graceful labelling
f with f(v) = 0 if and only if there exist integers x and r such that m1 = (m2 + 2 −
x)(r − 1) − x, with: (i) x, r not both odd; (ii) 2 ≤ r ≤ |E(T )|/2; and (iii) 0 ≤ x ≤
min{r − 1,m2}.

Let D denote the class of diameter-four trees whose center has degree two and that
do not satisfy the conditions of Theorem 1. Let D′ be the class of trees built by identifying
a leaf of an arbitrary path Pn, n ≥ 1, with the center of a tree in D. Bussel proved that,
given a tree T with diameter four, T is 0-rotatable if and only if T �∈ D′. Additionally,
he showed that all trees with at most 14 vertices and that are not 0-rotatable belong to the
class D′. Thus, based on these results, the author posed the following conjecture.

Conjecture 2 ([Bussel 2004]). The class D′ contains all non 0-rotatable trees.

From the time it was first studied, 50 years ago, 0-rotatability of trees has been
considered a possible way to approach the Graceful Tree Conjecture, and also a challeng-
ing problem by itself. In particular, a family of trees for which the 0-rotatability property
is not known is the family of caterpillars, defined as follows. A tree T is a caterpillar if
either T is a path or the subgraph obtained by deleting all its leaves (the base of T ) is a
path.

In fact, note that, if Conjecture 2 is true, then it implies that every caterpillar with
diamater at least five is 0-rotatable. Considering these observations, in this work, we
investigate Conjecture 2 restricted to caterpillars and prove that the following families
of caterpillars are 0-rotatable: (i) caterpillars with perfect matching; (ii) caterpillars ob-
tained by identifying a central vertex of Pn with a vertex of K2; (iii) caterpillars obtained
by identifying one leaf of K1,s−1 to one leaf of Pn, with n ≥ 4 and s ≥ �n−1

2
�; (iv)

caterpillars with diameter five or six; and (v) some families of caterpillars with diameter
at least seven. These results reinforce Conjecture 2.

2. Preliminaries
A matching of a graph G is a set of pairwise nonadjacent edges of G. Let M be a matching
of a graph G. A vertex v ∈ V (G) is saturated by M if v is incident with an edge of M .
A perfect matching of G is a matching that saturates all the vertices of G. Let T be a tree
with a perfect matching M . The contree of T is the tree T ′ obtained from T by contracting
all the edges of M .

Broersma and Hoede [Broersma and Hoede 1999] introduced the concept of
strongly graceful labellings of trees defined as follows. Let T be a tree with a perfect
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matching M . A labelling f of T is strongly graceful if f is a graceful labelling and if
f(u)+f(v) = |E(T )| for every edge uv ∈ M . The authors proved that the Graceful Tree
Conjecture is true if and only if every tree with a perfect matching has a strongly graceful
labelling. They also studied the label 0 in strong graceful labellings, as presented in the
next lemma. This result is important for the proof of Theorem 5.
Lemma 3 ([Broersma and Hoede 1999]). Let T be a tree with a perfect matching M
and uv ∈ M , u, v ∈ V (T ). Let T ′ be the contree of T and let x ∈ V (T ′) be the vertex
corresponding to the edge uv. If T ′ has a graceful labelling f ′, with f ′(x) = 0, then T has
two strongly graceful labellings f1 and f2, such that: (i) f1(u) = 0 and f1(v) = |E(T )|;
(ii) f2(u) = |E(T )| and f2(v) = 0.

Given a graceful labelling f of a tree T , the complementary labelling of f is
the labelling f defined by f(v) = |E(T )| − f(v) for each v ∈ V (T ). Note that the
complementary labelling is also a graceful labelling since: (i) f(v) is an injection from
V (T ) to {0, . . . , |E(T )|}; and (ii) for each uv ∈ E(T ), |f(u) − f(v)| = |(m − f(u)) −
(m− f(v))| = |f(v)− f(u)|.

A technique used in our proofs is the method of transfers, defined as follows. Let
u, v, u1 be distinct vertices of a tree T , such that u1 is adjacent to u. We call transfer, the
operation of deleting the edge u1u from T and adding the edge u1v. After the transfer
operation, we say that u1 has been moved from u to v. The following lemma determines
when a transfer performed over a graceful tree generates another graceful tree.
Lemma 4 ([Hrnčiar and Haviar 2001]). Let f be a graceful labelling of a tree T and let
u, v ∈ V (T ) be two distinct vertices. If u is adjacent to leaves u1, u2 ∈ V (T ), such that
u1 �= v, u2 �= v and f(u1) + f(u2) = f(u) + f(v), then the tree T ′ obtained by moving
u1, u2 from u to v is also graceful.

3. Results
In this section, we state our main results. In particular, Theorems 7 and 8, and the second
family stated in Theorem 6 show that, for each integer d ≥ 5, there exist 0-rotatable
caterpillars with diameter d and an arbitrarily large number of vertices. These results
reinforce the conjecture that all caterpillars with diameter at least five are 0-rotatable.
Theorem 5. Every caterpillar with a perfect matching is 0-rotatable.

Proof. Let T be a caterpillar with a perfect matching M and let uv ∈ M , u, v ∈ V (T ).
Let T ′ be the contree of T and let x ∈ V (T ′) be the vertex corresponding to the edge uv.
Since T has a perfect matching, we have that T ′ is a path. Rosa proved that every path is
0-rotatable [Rosa 1977]. Therefore, T ′ is 0-rotatable. Hence, T ′ has a graceful labelling
f ′ such that f ′(x) = 0. By Lemma 3, T has two strongly graceful labellings f1 and f2
such that: f1(u) = 0 and f1(v) = |E(T )|; f2(u) = |E(T )| and f2(v) = 0. Therefore,
there exist strongly graceful labellings of T which assign the label 0 to vertex u or v.
Since uv is arbitrary, we conclude that T is 0-rotatable.

Theorem 6. The following families of caterpillars are 0-rotatable: (i) caterpillars ob-
tained by identifying a vertex of K2 with a central vertex of Pn; (ii) caterpillars obtained
by identifying one leaf of the star K1,s−1 to a leaf of Pn, with n ≥ 4 and s ≥ �n−1

2
�.

Outline of the proof. Let T be a caterpillar as defined in the hypothesis and let v ∈ V (T )
be an arbitrary vertex. First, we specify an edge wz ∈ E(T ), w, z ∈ V (T ), and remove
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2
�.

Outline of the proof. Let T be a caterpillar as defined in the hypothesis and let v ∈ V (T )
be an arbitrary vertex. First, we specify an edge wz ∈ E(T ), w, z ∈ V (T ), and remove

wz from T , thus obtaining two vertex-disjoint subgraphs H1 ⊂ T and H2 ⊂ T such
that w, v ∈ V (H1) and z ∈ V (H2). Consider a bipartition {V1, V2} of V (H1) such
that v ∈ V1 and define k = |V1|. Thus, we construct injective labellings f1, f2 for H1,
H2, respectively, where f1:V (H1) → {0, . . . , k − 1} ∪ {k + |E(H2)| + 1, . . . , |E(T )|},
f2:V (H2) → {k, k+1, . . . , k+|E(H2)|}, and such that: (i) f1(v) = 0; (ii) the edge labels
induced by f2 are 1, 2, . . . , |E(H2)|; (iii) the edge labels induced by f1 are |E(H2)| +
2, . . . , |E(T )|; and (iv) f1(w) and f2(z) are such that |f1(w) − f2(z)| = |E(H2)| + 1.
Finally, we define a labelling f of T as follows: for u ∈ V (T ), f(u) = f1(u) if u ∈ H1;
and f(u) = f2(u) if u ∈ H2. Therefore, f is a graceful labelling of T with f(v) = 0 and,
since v is an arbitrary vertex, we obtain that T is 0-rotatable.

Theorem 7. If T is a caterpillar with diameter five or six, then T is 0-rotatable.
Outline of the proof. Let T be a caterpillar with diameter five or six. For each vertex
v ∈ V (T ) in the base of T , we construct a graceful labelling f of T that assigns label 0 to
v and assigns label |E(T )| to any leaf u ∈ V (T ) adjacent to v. Consequently, given any of
these graceful labellings f , one can use its complementary labelling f in order to obtain
f(u) = 0 and f(v) = |E(T )|. Since f is also a graceful labelling and f was constructed
considering an arbitrary vertex v of the base of T , we obtain that T is 0-rotatable.

Theorem 8. If T has odd diameter at least seven and each vertex of its base is adjacent
to a positive even number of leaves, then T is 0-rotatable. Additionally, If T has even
diameter at least eight and each vertex of its base is adjacent to an even number of at
least 4 leaves, then T is 0-rotatable.
Outline of the proof. The technique used in this proof is similar to the technique used in
the proof of Theorem 7.
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