Some families of 0-rotatable graceful caterpillars

Atílio G. Luiz¹, C. N. Campos¹, R. Bruce Richter²

¹Instituto de Computação – Universidade Estadual de Campinas (UNICAMP) Campinas – São Paulo – Brasil

²Department of Combinatorics and Optimization – University of Waterloo Waterloo – Ontario – Canada

gomes.atilio@gmail.com, campos@ic.unicamp.br, brichter@uwaterloo.ca

Abstract. A graceful labelling of a tree T is an injective function $f: V(T) \rightarrow \{0, 1, \ldots, |E(T)|\}$ such that $\{|f(u) - f(v)|: uv \in E(T)\} = \{1, 2, \ldots, |E(T)|\}$. A tree T is said to be 0-rotatable if, for any $v \in V(T)$, there exists a graceful labelling f of T such that f(v) = 0. In this work, it is proved that the following families of caterpillars are 0-rotatable: caterpillars with perfect matching; caterpillars obtained by identifying a central vertex of a path P_n with a vertex of K_2 ; caterpillars obtained by identifying one leaf of the star $K_{1,s-1}$ to a leaf of P_n , with $n \ge 4$ and $s \ge \lceil \frac{n-1}{2} \rceil$; caterpillars with diameter five or six; and some families of caterpillars with diameter at least seven. This result reinforces the conjecture that all caterpillars with diameter at least five are 0-rotatable.

1. Introduction

Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). A graceful labelling of G is an injection $f: V(G) \rightarrow \{0, 1, \ldots, |E(G)|\}$ such that $\{|f(u) - f(v)|: uv \in E(G)\} = \{1, 2, \ldots, |E(G)|\}$. We say that G is graceful if it has a graceful labelling.

In 1967, Rosa introduced four types of labellings of graphs, including graceful labellings, and posed the *Graceful Tree Conjecture* which states that all trees are graceful [Rosa 1967]. Rosa proved that the Graceful Tree Conjecture is a strenghtened version of the well-known *Ringel-Kotzig Conjecture* which states that the complete graph K_{2m+1} has a cyclic decomposition into subgraphs isomorphic to a given tree T with m edges. The Graceful Tree Conjecture is a very important open problem in Graph Theory, with more than a thousand papers about it [Gallian 2015].

As soon as one starts investigating graceful labellings of trees, it becomes clear the importance of knowing how to construct graceful labellings with the label 0 appearing in a given vertex. The importance of label 0 in a graceful labelling of a tree T is due to the fact that it is easy to grow T by adding k new leaves to the 0-labelled vertex and expand the graceful labelling by assigning labels $|E(T)| + 1, \ldots, |E(T)| + k$ to these new leaves. A tree T is 0-*rotatable* if, for any $v \in V(T)$, there exists a graceful labelling f of T such that f(v) = 0.

The importance of 0-rotatability of trees was first noted by Rosa in his seminal paper [Rosa 1967], in which the author stated, without proof, that all paths are 0-rotatable. Ten years later, the author published a proof of this result [Rosa 1977]. Meanwhile, in 1969, some examples of non 0-rotatable trees were discovered [Gallian 2015]. As an

example, the smallest non 0-rotatable tree is the tree obtained by identifying one leaf of the star $K_{1,3}$ to a leaf of P_3 . Posteriorly, Chung and Hwang investigated the 0-rotatability of a product of trees called Δ -construction and proved that if two trees T_1 and T_2 are 0rotatable, then their product $T_1\Delta T_2$ is also 0-rotatable [Chung and Hwang 1981]. In 2004, Bussel [Bussel 2004] showed that all trees with diameter at most three are 0-rotatable. The author also showed that there exist non 0-rotatable trees with diameter four. In fact, he completely characterized the diamater-four non 0-rotatable trees using the following result.

Theorem 1 ([Bussel 2004]). Let T be a tree of diameter four such that its center v has degree two. Let v_1, v_2 be the vertices adjacent to v and m_1, m_2 be the number of leaves adjacent to v_1, v_2 , respectively. Assume $m_1 \ge m_2$. The tree T has a graceful labelling f with f(v) = 0 if and only if there exist integers x and r such that $m_1 = (m_2 + 2 - x)(r-1) - x$, with: (i) x, r not both odd; (ii) $2 \le r \le |E(T)|/2$; and (iii) $0 \le x \le \min\{r-1, m_2\}$.

Let \mathcal{D} denote the class of diameter-four trees whose center has degree two and that do not satisfy the conditions of Theorem 1. Let \mathcal{D}' be the class of trees built by identifying a leaf of an arbitrary path P_n , $n \ge 1$, with the center of a tree in \mathcal{D} . Bussel proved that, given a tree T with diameter four, T is 0-rotatable if and only if $T \notin \mathcal{D}'$. Additionally, he showed that all trees with at most 14 vertices and that are not 0-rotatable belong to the class \mathcal{D}' . Thus, based on these results, the author posed the following conjecture.

Conjecture 2 ([Bussel 2004]). *The class* \mathcal{D}' *contains all non* 0*-rotatable trees.*

From the time it was first studied, 50 years ago, 0-rotatability of trees has been considered a possible way to approach the Graceful Tree Conjecture, and also a challenging problem by itself. In particular, a family of trees for which the 0-rotatability property is not known is the family of caterpillars, defined as follows. A tree T is a *caterpillar* if either T is a path or the subgraph obtained by deleting all its leaves (the *base* of T) is a path.

In fact, note that, if Conjecture 2 is true, then it implies that every caterpillar with diamater at least five is 0-rotatable. Considering these observations, in this work, we investigate Conjecture 2 restricted to caterpillars and prove that the following families of caterpillars are 0-rotatable: (i) caterpillars with perfect matching; (ii) caterpillars obtained by identifying a central vertex of P_n with a vertex of K_2 ; (iii) caterpillars obtained by identifying one leaf of $K_{1,s-1}$ to one leaf of P_n , with $n \ge 4$ and $s \ge \lceil \frac{n-1}{2} \rceil$; (iv) caterpillars with diameter five or six; and (v) some families of caterpillars with diameter at least seven. These results reinforce Conjecture 2.

2. Preliminaries

A matching of a graph G is a set of pairwise nonadjacent edges of G. Let M be a matching of a graph G. A vertex $v \in V(G)$ is saturated by M if v is incident with an edge of M. A perfect matching of G is a matching that saturates all the vertices of G. Let T be a tree with a perfect matching M. The contree of T is the tree T' obtained from T by contracting all the edges of M.

Broersma and Hoede [Broersma and Hoede 1999] introduced the concept of strongly graceful labellings of trees defined as follows. Let T be a tree with a perfect

matching M. A labelling f of T is *strongly graceful* if f is a graceful labelling and if f(u) + f(v) = |E(T)| for every edge $uv \in M$. The authors proved that the Graceful Tree Conjecture is true if and only if every tree with a perfect matching has a strongly graceful labelling. They also studied the label 0 in strong graceful labellings, as presented in the next lemma. This result is important for the proof of Theorem 5.

Lemma 3 ([Broersma and Hoede 1999]). Let T be a tree with a perfect matching Mand $uv \in M$, $u, v \in V(T)$. Let T' be the contree of T and let $x \in V(T')$ be the vertex corresponding to the edge uv. If T' has a graceful labelling f', with f'(x) = 0, then T has two strongly graceful labellings f_1 and f_2 , such that: (i) $f_1(u) = 0$ and $f_1(v) = |E(T)|$; (ii) $f_2(u) = |E(T)|$ and $f_2(v) = 0$.

Given a graceful labelling f of a tree T, the complementary labelling of f is the labelling \overline{f} defined by $\overline{f}(v) = |E(T)| - f(v)$ for each $v \in V(T)$. Note that the complementary labelling is also a graceful labelling since: (i) f(v) is an injection from V(T) to $\{0, \ldots, |E(T)|\}$; and (ii) for each $uv \in E(T), |\overline{f}(u) - \overline{f}(v)| = |(m - f(u)) - (m - f(v))| = |f(v) - f(u)|$.

A technique used in our proofs is the method of transfers, defined as follows. Let u, v, u_1 be distinct vertices of a tree T, such that u_1 is adjacent to u. We call *transfer*, the operation of deleting the edge u_1u from T and adding the edge u_1v . After the transfer operation, we say that u_1 has been *moved* from u to v. The following lemma determines when a transfer performed over a graceful tree generates another graceful tree.

Lemma 4 ([Hrnčiar and Haviar 2001]). Let f be a graceful labelling of a tree T and let $u, v \in V(T)$ be two distinct vertices. If u is adjacent to leaves $u_1, u_2 \in V(T)$, such that $u_1 \neq v, u_2 \neq v$ and $f(u_1) + f(u_2) = f(u) + f(v)$, then the tree T' obtained by moving u_1, u_2 from u to v is also graceful.

3. Results

In this section, we state our main results. In particular, Theorems 7 and 8, and the second family stated in Theorem 6 show that, for each integer $d \ge 5$, there exist 0-rotatable caterpillars with diameter d and an arbitrarily large number of vertices. These results reinforce the conjecture that all caterpillars with diameter at least five are 0-rotatable.

Theorem 5. Every caterpillar with a perfect matching is 0-rotatable.

Proof. Let T be a caterpillar with a perfect matching M and let $uv \in M$, $u, v \in V(T)$. Let T' be the contree of T and let $x \in V(T')$ be the vertex corresponding to the edge uv. Since T has a perfect matching, we have that T' is a path. Rosa proved that every path is 0-rotatable [Rosa 1977]. Therefore, T' is 0-rotatable. Hence, T' has a graceful labelling f' such that f'(x) = 0. By Lemma 3, T has two strongly graceful labellings f_1 and f_2 such that: $f_1(u) = 0$ and $f_1(v) = |E(T)|$; $f_2(u) = |E(T)|$ and $f_2(v) = 0$. Therefore, there exist strongly graceful labellings of T which assign the label 0 to vertex u or v. Since uv is arbitrary, we conclude that T is 0-rotatable.

Theorem 6. The following families of caterpillars are 0-rotatable: (i) caterpillars obtained by identifying a vertex of K_2 with a central vertex of P_n ; (ii) caterpillars obtained by identifying one leaf of the star $K_{1,s-1}$ to a leaf of P_n , with $n \ge 4$ and $s \ge \lceil \frac{n-1}{2} \rceil$.

Outline of the proof. Let T be a caterpillar as defined in the hypothesis and let $v \in V(T)$ be an arbitrary vertex. First, we specify an edge $wz \in E(T)$, $w, z \in V(T)$, and remove

wz from T, thus obtaining two vertex-disjoint subgraphs $H_1 \,\subset T$ and $H_2 \,\subset T$ such that $w, v \in V(H_1)$ and $z \in V(H_2)$. Consider a bipartition $\{V_1, V_2\}$ of $V(H_1)$ such that $v \in V_1$ and define $k = |V_1|$. Thus, we construct injective labellings f_1, f_2 for H_1, H_2 , respectively, where $f_1: V(H_1) \to \{0, \ldots, k-1\} \cup \{k + |E(H_2)| + 1, \ldots, |E(T)|\}$, $f_2: V(H_2) \to \{k, k+1, \ldots, k+|E(H_2)|\}$, and such that: (i) $f_1(v) = 0$; (ii) the edge labels induced by f_2 are $1, 2, \ldots, |E(H_2)|$; (iii) the edge labels induced by f_1 are $|E(H_2)| + 2, \ldots, |E(T)|$; and (iv) $f_1(w)$ and $f_2(z)$ are such that $|f_1(w) - f_2(z)| = |E(H_2)| + 1$. Finally, we define a labelling f of T as follows: for $u \in V(T)$, $f(u) = f_1(u)$ if $u \in H_1$; and $f(u) = f_2(u)$ if $u \in H_2$. Therefore, f is a graceful labelling of T with f(v) = 0 and, since v is an arbitrary vertex, we obtain that T is 0-rotatable.

Theorem 7. If T is a caterpillar with diameter five or six, then T is 0-rotatable.

Outline of the proof. Let T be a caterpillar with diameter five or six. For each vertex $v \in V(T)$ in the base of T, we construct a graceful labelling f of T that assigns label 0 to v and assigns label |E(T)| to any leaf $u \in V(T)$ adjacent to v. Consequently, given any of these graceful labellings f, one can use its complementary labelling \overline{f} in order to obtain $\overline{f}(u) = 0$ and $\overline{f}(v) = |E(T)|$. Since \overline{f} is also a graceful labelling and f was constructed considering an arbitrary vertex v of the base of T, we obtain that T is 0-rotatable.

Theorem 8. If T has odd diameter at least seven and each vertex of its base is adjacent to a positive even number of leaves, then T is 0-rotatable. Additionally, If T has even diameter at least eight and each vertex of its base is adjacent to an even number of at least 4 leaves, then T is 0-rotatable.

Outline of the proof. The technique used in this proof is similar to the technique used in the proof of Theorem 7. \Box

4. Acknowledgments

This work was funded by FAPESP, grants 2014/16987-1, 2014/16861-8, 2015/03372-1, and NSERC grant 41705-2014 057082.

References

- Broersma, A. J. and Hoede, C. (1999). Another equivalent of the graceful tree conjecture. *Ars Combinatoria*, 51:183–192.
- Bussel, F. V. (2004). 0-Centred and 0-ubiquitously graceful trees. *Discrete Mathematics*, 277:193–218.
- Chung, F. R. K. and Hwang, F. K. (1981). Rotatable graceful graphs. *Ars Combinatoria*, 11:239–250.
- Gallian, J. A. (2015). A dynamic survey of graph labeling. *The Electronic Journal of Combinatorics*, DS6, 1–389.
- Hrnčiar, P. and Haviar, A. (2001). All trees of diameter five are graceful. *Discrete Mathematics*, 233:133–150.
- Rosa, A. (1967). On certain valuations of the vertices of a graph. *Theory of Graphs* (*Internat. Sympos., Rome, 1966*) *Gordon and Breach, New York; Dunod, Paris,* 349–355.

Rosa, A. (1977). Labeling snakes. Ars Combinatoria, 3:67–73.