
XXXVI Congresso da Sociedade Brasileira de Computação

828

UKP5: Solving the Unbounded Knapsack Problem

Henrique Becker , Luciana S. Buriol

1Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

{hbecker,buriol}@inf.ufrgs.br

Abstract. In this extended abstract we present UKP5, an algorithm for solving
the unbounded knapsack problem. UKP5 is based on dynamic programming, but
implemented in a non traditional way: instead of looking backward for stored
values of subproblems, it stores incremental lower bounds forward. UKP5 is
considerably simpler than EDUK2, the state-of-the-art algorithm for solving
the problem. We run UKP5 and EDUK2 on a benchmark of 4540 hard instances
proposed by the authors of EDUK2. The results reveal that UKP5 outperforms
EDUK2, being 47 times faster on the average.

Resumo. Nesse resumo extendido nós apresentamos o UKP5, um algoritmo
para solucionar o unbounded knapsack problem (problema da mochila com
repetições). O UKP5 é baseado em programação dinâmica, mas implemen-
tado de uma forma não-tradicional: ao invés de olhar para trás para usar
soluções de subproblemas previamente computados, ele armazena limites in-
feriores a frente. O UKP5 é consideravelmente mais simples que o EDUK2,
o algoritmo do estado da arte para solucionar o problema. Nós executamos o
UKP5 e o EDUK2 em uma bateria de testes contendo 4540 instâncias conside-
radas difı́ceis pelos autores do EDUK2. Os resultados mostram que o UKP5 é,
em média, 47 vezes mais rápido que o EDUK2.

1. Introduction

The unbounded knapsack problem (UKP) is a simpler variation of the well-known
bounded knapsack problem (BKP). UKP allows the allocation of an unbounded quan-
tity of each item type. The UKP is NP-Hard, and thus has no known polynomial-time
algorithm for solving it. However, it can be solved by a pseudo-polynomial dynamic
programming algorithm.

Two techniques are often used for solving UKP: dynamic programming (DP)
[Andonov et al. 2000], [Garfinkel and Nemhauser 1972, p. 214], and branch and bound
(B&B) [Martello and Toth 1990]. The state-of-the-art solver for the UKP, introduced
by [Poirriez et al. 2009], is a hybrid solver that combines DP and B&B. The solver’s
name is PYAsUKP, and it is an implementation of the EDUK2 algorithm.

An UKP instance is composed by a capacity c, and a list of n items. Each item can
be referenced by its index in the item list i ∈ {1 . . . n}. Each item i has a weight value wi,
and a profit value pi. A solution is an item multiset, i.e, a set that allows multiple copies
of the same element. The sum of the items weight, or profit, of a solution s is denoted
by ws, or ps. A valid solution s has ws ≤ c. An optimal solution s∗ is a valid solution



829

ETC - 1º Encontro de Teoria da Computação

UKP5: Solving the Unbounded Knapsack Problem

Henrique Becker , Luciana S. Buriol

1Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

{hbecker,buriol}@inf.ufrgs.br

Abstract. In this extended abstract we present UKP5, an algorithm for solving
the unbounded knapsack problem. UKP5 is based on dynamic programming, but
implemented in a non traditional way: instead of looking backward for stored
values of subproblems, it stores incremental lower bounds forward. UKP5 is
considerably simpler than EDUK2, the state-of-the-art algorithm for solving
the problem. We run UKP5 and EDUK2 on a benchmark of 4540 hard instances
proposed by the authors of EDUK2. The results reveal that UKP5 outperforms
EDUK2, being 47 times faster on the average.

Resumo. Nesse resumo extendido nós apresentamos o UKP5, um algoritmo
para solucionar o unbounded knapsack problem (problema da mochila com
repetições). O UKP5 é baseado em programação dinâmica, mas implemen-
tado de uma forma não-tradicional: ao invés de olhar para trás para usar
soluções de subproblemas previamente computados, ele armazena limites in-
feriores a frente. O UKP5 é consideravelmente mais simples que o EDUK2,
o algoritmo do estado da arte para solucionar o problema. Nós executamos o
UKP5 e o EDUK2 em uma bateria de testes contendo 4540 instâncias conside-
radas difı́ceis pelos autores do EDUK2. Os resultados mostram que o UKP5 é,
em média, 47 vezes mais rápido que o EDUK2.

1. Introduction

The unbounded knapsack problem (UKP) is a simpler variation of the well-known
bounded knapsack problem (BKP). UKP allows the allocation of an unbounded quan-
tity of each item type. The UKP is NP-Hard, and thus has no known polynomial-time
algorithm for solving it. However, it can be solved by a pseudo-polynomial dynamic
programming algorithm.

Two techniques are often used for solving UKP: dynamic programming (DP)
[Andonov et al. 2000], [Garfinkel and Nemhauser 1972, p. 214], and branch and bound
(B&B) [Martello and Toth 1990]. The state-of-the-art solver for the UKP, introduced
by [Poirriez et al. 2009], is a hybrid solver that combines DP and B&B. The solver’s
name is PYAsUKP, and it is an implementation of the EDUK2 algorithm.

An UKP instance is composed by a capacity c, and a list of n items. Each item can
be referenced by its index in the item list i ∈ {1 . . . n}. Each item i has a weight value wi,
and a profit value pi. A solution is an item multiset, i.e, a set that allows multiple copies
of the same element. The sum of the items weight, or profit, of a solution s is denoted
by ws, or ps. A valid solution s has ws ≤ c. An optimal solution s∗ is a valid solution

with the greatest profit among all valid solutions. The UKP objective is to find an optimal
solution for the given UKP instance. The mathematical formulation of UKP is:

maximize
n∑

i=1

pixi (1) subject to
n∑

i=1

wixi ≤ c (2) xi ∈ N0 (3)

The quantities of each item i in an optimal solution are denoted by xi, and are
restricted to the non-negative integers, as (3) indicates. The efficiency of an item i is the
ratio pi

wi
. We use wmin and wmax to denote the smallest item weight, and the biggest item

weight, respectively.

2. UKP5: The Proposed Algorithm

UKP5 is inspired by the DP algorithm described by Garfinkel and Nemhauser (we will
reference it as G&N) [Garfinkel and Nemhauser 1972, p. 221]. The name “UKP5” is due
to five improvements applied over that algorithm: Symmetry pruning: symmetric solu-
tions are pruned in a more efficient fashion than in G&N; Sparsity: not every position
of the optimal solutions value array has to be computed; Dominated solutions prun-
ing: we never generate some solutions if they are worse than solutions already generated
(bigger weight and smaller profit); Time/memory tradeoff: the test wi ≤ y from G&N
was removed in cost of more O(wmax) memory; Periodicity: the periodicity check sug-
gested in [Garfinkel and Nemhauser 1972] (but not implemented there) was adapted and
implemented.

The g is a sparse array where we store solutions profit. If g[y] > 0 then there
exists a non-empty solution s with ws = y and ps = g[y]. The d array stores the index of
the last item used on a solution. If g[y] > 0 ∧ d[y] = i then the solution s with ws = y
and ps = g[y] has at least one copy of item i. Our first loop (lines 4 to 9) stores all
solutions comprised of a single item in the arrays g and d. After this setup, we simply
iterate g and, when we find a stored solution, we create new solutions combining the
current solution with single items. We only prune symmetric or dominated solutions, all
other valid solutions are generated. Consequently, one of those solutions is guaranteed to
be an optimal solution, and opt will end with the optimal solution profit value.

With the intent of making easier to the reader to undestand the core ideia of the
UKP5 algorithm, the pseudocode presented at Algorithm 1 was stripped of many small
optimizations. Some of them are: all the items are sorted by non-increasing efficiency; the
y∗ periodicity bound is computed as in [Garfinkel and Nemhauser 1972, p. 223], and used
to reduce the c value; an UKP5-specific periodicity check is used, we don’t describe it here
because of the page limit. The solution assemble phase also isn’t described here, but it’s
similar to the one used by the DP method described in [Garfinkel and Nemhauser 1972,
p. 221, Steps 6-8].

3. Computational Results, Analysis and Conclusions

The computer used on the experiments was an ASUS R552JK-CN159H (Intel Core
i7-4700HQ Processor, 6M Cache, 3.40 GHz). The operating system used was Linux
4.3.3-2 x86 64. The number of instances of each different class are: Subset-Sum (400);
Strong Correlation (240); Postponed Periodicity (800); No Collective Dominance (2000);



XXXVI Congresso da Sociedade Brasileira de Computação

830

Algorithm 1 UKP5 – Computation of opt
1: procedure UKP5(n, c, w, p, wmin, wmax)
2: g ← array of c+ wmax positions each one initialized with 0
3: d ← array of c+ wmax positions each one initialized with n
4: for i ← 1, n do � Stores one-item solutions
5: if g[wi] < pi then
6: g[wi] ← pi
7: d[wi] ← i
8: end if
9: end for

10: opt ← 0
11: for y ← wmin, c do � Can end early because of periodicity check
12: if g[y] ≤ opt then � Handles sparsity and pruning of dominated solutions
13: continue � Ends current iteration and begins the next
14: end if
15: opt ← g[y]
16: for i = 1, d[y] do � Creates new solutions (never symmetric)
17: if g[y + wi] < g[y] + pi then
18: g[y + wi] ← g[y] + pi
19: d[y + wi] ← i
20: end if
21: end for
22: end for
23: return opt
24: end procedure

SAW (1100). These datasets aim to reproduce the ones described in [Poirriez et al. 2009]
(see the paper for more information). The same tool was used to generate the datasets
(PYAsUKP). The capacity of the instances vary between 106 and 108, and the number
of items vary between 103 and 105. The sources can be found at https://github.
com/henriquebecker91/masters/tree/v0.11.

As we can see in Figure 3, for many instances PYAsUKP is faster than UKP5.
However, PYAsUKP can also be one or more orders of magnitude slower than UKP5 on
some instances. Our tests have shown when PYAsUKP is faster than UKP5 this is often
because of its B&B phase, that solves some instances almost instantly. When B&B fails
to solve the instance in a short time, PYAsUKP fallbacks to a DP algorithm that seems
to be many times slower than UKP5. It’s important to note that both algorithms have
a pseudo-polynomial worst-case (O(c × n)). Integrating a B&B phase to UKP5 seems
promising, and will be the theme for future works.

1The UKP5 implementation is at codes/cpp/ and two versions of PYAsUKP are at codes/ocaml/.
The pyasukp site.tgz is the version used to generate the instances, and was also available at http:
//download.gna.org/pyasukp/pyasukpsrc.html. A more stable version was provided by
the authors. This version is in pyasukp mail.tgz and it was used to solve the instances the results presented
in Figure 3. The create * instances.sh scripts inside codes/sh/ were used to generate the instance datasets.



831

ETC - 1º Encontro de Teoria da Computação

Algorithm 1 UKP5 – Computation of opt
1: procedure UKP5(n, c, w, p, wmin, wmax)
2: g ← array of c+ wmax positions each one initialized with 0
3: d ← array of c+ wmax positions each one initialized with n
4: for i ← 1, n do � Stores one-item solutions
5: if g[wi] < pi then
6: g[wi] ← pi
7: d[wi] ← i
8: end if
9: end for

10: opt ← 0
11: for y ← wmin, c do � Can end early because of periodicity check
12: if g[y] ≤ opt then � Handles sparsity and pruning of dominated solutions
13: continue � Ends current iteration and begins the next
14: end if
15: opt ← g[y]
16: for i = 1, d[y] do � Creates new solutions (never symmetric)
17: if g[y + wi] < g[y] + pi then
18: g[y + wi] ← g[y] + pi
19: d[y + wi] ← i
20: end if
21: end for
22: end for
23: return opt
24: end procedure

SAW (1100). These datasets aim to reproduce the ones described in [Poirriez et al. 2009]
(see the paper for more information). The same tool was used to generate the datasets
(PYAsUKP). The capacity of the instances vary between 106 and 108, and the number
of items vary between 103 and 105. The sources can be found at https://github.
com/henriquebecker91/masters/tree/v0.11.

As we can see in Figure 3, for many instances PYAsUKP is faster than UKP5.
However, PYAsUKP can also be one or more orders of magnitude slower than UKP5 on
some instances. Our tests have shown when PYAsUKP is faster than UKP5 this is often
because of its B&B phase, that solves some instances almost instantly. When B&B fails
to solve the instance in a short time, PYAsUKP fallbacks to a DP algorithm that seems
to be many times slower than UKP5. It’s important to note that both algorithms have
a pseudo-polynomial worst-case (O(c × n)). Integrating a B&B phase to UKP5 seems
promising, and will be the theme for future works.

1The UKP5 implementation is at codes/cpp/ and two versions of PYAsUKP are at codes/ocaml/.
The pyasukp site.tgz is the version used to generate the instances, and was also available at http:
//download.gna.org/pyasukp/pyasukpsrc.html. A more stable version was provided by
the authors. This version is in pyasukp mail.tgz and it was used to solve the instances the results presented
in Figure 3. The create * instances.sh scripts inside codes/sh/ were used to generate the instance datasets.

Figure 1. The times used by UKP5 and PYAsUKP for each instance of each class.
The black dots represent PYAsUKP times. The gray dots represent UKP5 times.
The y axis is the time used to solve an UKP instance, in seconds. The x axis is
the instance index when the instances are are sorted by the time PYAsUKP took
to solve it. Note that the y axis is in logarithmic scale.

Acknowledgments We are thankful to the CNPq (Conselho Nacional de Desenvolvi-
mento Cientı́fico e Tecnológico) for the financial support.

References
Andonov, R., Poirriez, V., and Rajopadhye, S. (2000). Unbounded knapsack prob-

lem: Dynamic programming revisited. European Journal of Operational Research,
123(2):394–407.

Garfinkel, R. S. and Nemhauser, G. L. (1972). Integer programming, volume 4. Wiley
New York.

Martello, S. and Toth, P. (1990). An exact algorithm for large unbounded knapsack prob-
lems. Operations research letters, 9(1):15–20.

Poirriez, V., Yanev, N., and Andonov, R. (2009). A hybrid algorithm for the unbounded
knapsack problem. Discrete Optimization, 6(1):110–124.


