Results on Circular-Arc Bigraphs
(Extended Abstract)

Fabricio Schiavon Kolberg1, Marina Groshaus2\dagger, André Luiz Pires Guedes1, Renato Carmo1

1Universidade Federal do Paraná, Curitiba, Brazil
2Universidad de Buenos Aires / CONICET, Buenos Aires, Argentina.

Abstract. We present a series of results related to the structural properties of the bipartite graph class known as circular-arc bigraphs. We also propose the definition of a Helly circular-arc bigraph subclass, based on a concept known as bipartite-Helly, along with a few results related to its structural properties.

1. Introduction

A circular-arc graph is a graph that admits an intersection model of arcs on a circle. Arising as a generalization of interval graphs, the class has been extensively studied by many researchers since 1964 [Lin and Szwarcfiter 2009], yielding a plethora of relevant results. Trotter and Moore [Trotter and Moore 1976] presented infinite sets of minimally non circular-arc graphs. Francis et al. [Francis et al. 2014] presented a characterization of circular-arc graphs, along with a certifying recognition algorithm. Furthermore, Hell and Huang [Hell and Huang 2004] characterized two-clique circular arc graphs as the complements of interval bigraphs. Soulignac, in his thesis [Soulignac 2010], characterized different circular-arc subclasses, including the Helly subclass, based on the concept of Helly families [Helly 1923]. A linear-time algorithm for recognition of the class was presented by McConell [McConnell 2003], based on the so-called circular-arc matrices.

The concept of circular-arc bigraphs arises as a bipartite variation of the circular-arc concept, similar to interval bigraphs with relation to interval graphs. We treat circular-arc bigraph representations as bi-circular-arc models \(B = (C, I, E) \), where \(C \) is a circle, and \(I, E \) are families of arcs over \(C \). It is then said that \(B \) represents a bipartite graph \(G = (U, V, E) \) if there is a one-to-one correspondence between \(U \) and \(I \), and one between \(V \) and \(E \), such that, for every \(u \in U \) and every \(v \in V \), \(\{u, v\} \in E \) if and only if the arc corresponding to \(u \) in \(I \) and the one corresponding \(v \) in \(E \) intersect.

Being a rather recent subject, it has yet to be as extensively studied as the other classes cited. Basu et al. [Basu et al. 2013] made a series of characterizations of circular-arc bigraphs, as well as the proper and unit subclasses, based on the so-called biadjacency matrices. Das et al. [Das and Chakraborty 2015] found a forbidden structure characterization of proper circular-arc bigraphs and interval bigraphs.

In this paper, we present a handful of results about the structural properties of circular-arc bigraphs, as well as the Helly subclass, which we introduce. Our study’s main focus were the structural properties of circular-arc bigraphs, based on their graph structures instead of matrix structures. A handful of potentially useful results were found, which we present in the next section.

*Partially supported by Coordenação de Aperfeiçoamento Pessoal de Nível Superior, CAPES
†Partially supported by ANPCyT PICT-2013-2205 and CONICET
2. Results on Circular-Arc Bigraphs

To represent circular arcs on a circle C of length n, we represent each point as a real number $0 \leq r < n$, which denotes a clockwise offset through the circle from a fixed zero point in C. It is then possible to denote a circular arc by a pair (r_1, r_2) of real numbers, where the arc is traced clockwise from point r_1 to point r_2, respectively called the counter-clockwise and clockwise endpoints of the arc. Furthermore, in the enunciation of the following results, every index sum is circular, which means that in an enumerated set $\{a_1, ..., a_n\}$, we have $a_{n+1} = a_1$ and $a_{1-n} = a_n$.

Lemma 1. Let $B = (U, V, E)$ be a bipartite graph, with $|V| = n$ and $|U| = m$. If there is an ordering $S = (v_1, ..., v_n)$ of V such that, for every $u \in U$, the neighborhood of u is circularly consecutive with relation to S, then B is a circular-arc bigraph.

Proof. Start with a circle C of length $n + 1$. For each $v_i \in V$, draw an arc $(i, i+1) \in \mathbb{I}$ to represent it. Then, for each $u \in U$ whose neighborhood ranges from v_i to v_j, we draw an arc $(i + \frac{1}{2}, j + \frac{1}{2}) \in \mathbb{E}$ to represent it. $(C, \mathbb{I}, \mathbb{E})$ corresponds to B. \hfill \Box

Lemma 1 implies that graphs such as generalized crowns and bipartite permutation graphs are all circular-arc bigraphs.

Definition 1. Let $a > 0$ and $0 \leq b < a$. The generalized crown graph S^a_b is a bipartite graph with vertex set $\{u_0, ..., u_{a-1}\} \cup \{v_0, ..., v_{a-1}\}$, such that the neighborhood of v_i is $U - \{u_i, ..., u_{i+b}\}$.

Definition 2. Let $G = (V, E)$ be a graph. Then G is a permutation graph if there exist two permutations P_1, P_2 of its vertex set such that, if the index of v in P_1 is less than that of w, then $\{v, w\} \in E$ if and only if the index of v in P_2 is greater than that of w. A bipartite permutation graph is simply a permutation graph that is bipartite.

Let \mathbb{A} be a family of arcs on a circle C. An arc B of \mathbb{A} is said to minimally intersect $A \in \mathbb{A}$ if it intersects A without intersecting another arc $A' \in \mathbb{A}$ such that $A' \subset A$. Lemma 2 allows us to describe a type of forbidden structure for the class.

Lemma 2. Let $0 < m < n$, and let \mathbb{A} be a family of arcs on a circle C, with $|\mathbb{A}| = n$, such that no two arcs have coinciding endpoints. There are at most n subfamilies $\mathbb{A}' \subset \mathbb{A}$ such that $|\mathbb{A}'| = m$ for which it is possible to draw an arc on C that intersects every arc of \mathbb{A}' without intersecting any of $\mathbb{A} - \mathbb{A}'$.

Proof. Let B be an arc on C ($B \notin \mathbb{A}$) that intersects exactly m arcs of \mathbb{A}. Let \mathbb{A}' be the family of arcs intersected by B, and let $S = (A_1, ..., A_m)$ be the order in which the counter-clockwise endpoint of each arc in \mathbb{A}' is first encountered by tracing the circle clockwise from the clockwise endpoint of B. Let A_i be the first arc in the order S that is minimally intersected by B. We shall call A_i the first minimally intersected arc of B. Notice that \mathbb{A}' contains all arcs that contain A_i. Let $k > 0$ be the number of such arcs. In particular, notice that every arc in $\{A_1, ..., A_{i-1}\}$ contains A_i, otherwise, either they would be minimally intersected themselves, or they’d contain another arc that is minimally intersected and comes before A_i in S. The other arcs that \mathbb{A}' contains will be exactly the first $m - k$ arcs that are not contained in (nor contain) A_i and whose counter-clockwise endpoints come immediately after the counter-clockwise endpoint of A_i. Therefore, if A_i is the first minimally intersected arc of a new arc B that intersects m arcs, \mathbb{A}' will always be the same. That implies that for each arc $A \in \mathbb{A}$, there is at
most one subfamily of \(m \) arcs which can be intersected by a new arc with \(A \) being the first minimally intersected arc (there might also be none, for instance, if an arc is contained in more than \(m - 1 \) arcs). Therefore, there are at most \(n \) subfamilies of \(m \) arcs that can be exclusively intersected by a new arc. \(\square \)

Corollary 3. Let \(B = (U, V, E) \) be a bipartite graph, such that \(|U| = n, |V| = n + 1 \), and there is a \(k \) such that \(|N(v)| = k \) for all \(v \in V \). If the neighborhoods of the vertices of \(V \) are all pairwise distinct, then \(B \) is not a circular-arc bigraph.

Figure 1 contains a handful of forbidden subgraphs we found for the class.

Figure 1. List of forbidden subgraphs we found for the circular-arc bigraph class.

2.1. Studies on the Helly Subclass

The concept of Helly families [Helly 1923] lends itself to the definition of many extensively studied graph classes [Szwarcfiter 1997, Groshaus and Szwarcfiter 2007, Groshaus and Szwarcfiter 2008]. An adaptation of the definition of Helly families, known as bipartite-Helly, was formulated by Groshaus and Szwarcfiter [Groshaus and Szwarcfiter 2010], and allows us to define Helly-like properties between pairs of families. For the results in this section, we first introduce interval bigraphs in Definition 3, and then *Helly circular-arc bigraphs* and *Helly interval bigraphs* in Definition 4, loosely based on the bipartite-Helly concept.

Definition 3. A bipartite graph \(B = (U, V, E) \) is an interval bigraph if it admits a bi-interval representation. A bi-interval representation of \(B \) is a mapping between \(U \cup V \) and a family of intervals on the real number line, such that \(u \in U \) and \(v \in V \) are neighbors if and only if their corresponding intervals intersect.

For the following definition, we consider a biclique of a given graph to be a maximal bipartite-complete induced subgraph.

Definition 4. A bipartite graph \(B \) is a Helly circular-arc bigraph if it admits a Helly bi-circular-arc model. A bi-circular-arc model \((C, I, E)\) is Helly if, for any biclique in the graph it represents, there is a point \(p \in C \) such that all arcs corresponding to vertices of the biclique contain \(p \). A bipartite graph \(B \) is a Helly interval bigraph if it admits a Helly bi-interval representation. A bi-interval representation is Helly if, for any biclique of the graph it represents, the intervals corresponding to the vertices of the biclique all contain a common point \(p \) in the real number line.

It is easy to verify that both classes are hereditary over induced subgraphs, and that Helly interval bigraphs are a proper subclass of Helly circular-arc bigraphs. Lemma 4 presents a sufficient condition for a graph to be a Helly circular-arc bigraph. We denote by \((C_{2k}, S_{\ell})\) the graph obtained by adding \(\ell \) isolated vertices to a \(C_{2k} \).

Lemma 4. Let \(G \) be a bipartite graph. If \(G \) is \(K_{1,3}\)-free and \((C_{2k}, S_{\ell})\)-free (with \(k > 2 \)), then \(G \) is a Helly circular-arc bigraph.
Lemma 4 is a simple sufficient condition for the Helly subclass, serving to prune the search space for forbidden structures. It is known to not be necessary, since \(K_{1,3} \) by itself is a Helly circular-arc bigraph.

References

