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Abstract. We present a series of results related to the structural properties of

the bipartite graph class known as circular-arc bigraphs. We also propose the

definition of a Helly circular-arc bigraph subclass, based on a concept known

as bipartite-Helly, along with a few results related to its structural properties.

1. Introduction
A circular-arc graph is a graph that admits an intersection model of arcs on a circle.
Arising as a generalization of interval graphs, the class has been extensively studied by
many researchers since 1964 [Lin and Szwarcfiter 2009], yielding a plethora of relevant
results. Trotter and Moore [Trotter and Moore 1976] presented infinite sets of minimally
non circular-arc graphs. Francis et al. [Francis et al. 2014] presented a characterization of
circular-arc graphs, along with a certifying recognition algorithm. Furthermore, Hell and
Huang [Hell and Huang 2004] characterized two-clique circular arc graphs as the com-
plements of interval bigraphs. Soulignac, in his thesis [Soulignac 2010], characterized
different circular-arc subclasses, including the Helly subclass, based on the concept of
Helly families [Helly 1923]. A linear-time algorithm for recognition of the class was
presented by McConell [McConnell 2003], based on the so-called circular-arc matrices.

The concept of circular-arc bigraphs arises as a bipartite variation of the circular-
arc concept, similar to interval bigraphs with relation to interval graphs. We treat circular-
arc bigraph representations as bi-circular-arc models B = (C, I,E), where C is a circle,
and I, E are families of arcs over C. It is then said that B represents a bipartite graph
G = (U, V,E) if there is a one-to-one correspondence between U and I, and one between
V and E, such that, for every u 2 U and every v 2 V , {u, v} 2 E if and only if the arc
corresponding to u in I and the one corresponding v in E intersect.

Being a rather recent subject, it has yet to be as extensively studied as the other
classes cited. Basu et al. [Basu et al. 2013] made a series of characterizations of circular-
arc bigraphs, as well as the proper and unit subclasses, based on the so-called biadjacency

matrices. Das et al. [Das and Chakraborty 2015] found a forbidden structure characteri-
zation of proper circular-arc bigraphs and interval bigraphs.

In this paper, we present a handful of results about the structural properties of
circular-arc bigraphs, as well as the Helly subclass, which we introduce. Our study’s
main focus were the structural properties of circular-arc bigraphs, based on their graph
structures instead of matrix structures. A handful of potentially useful results were found,
which we present in the next section.
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2. Results on Circular-Arc Bigraphs
To represent circular arcs on a circle C of length n, we represent each point as a real
number 0  r < n, which denotes a clockwise offset through the circle from a fixed zero
point in C. It is then possible to denote a circular arc by a pair (r1, r2) of real numbers,
where the arc is traced clockwise from point r1 to point r2, respectively called the
counter-clockwise and clockwise endpoints of the arc. Furthermore, in the enunciation
of the following results, every index sum is circular, which means that in an enumerated
set {a1, ..., an}, we have an+1 = a1 and a1−1 = an.

Lemma 1. Let B = (U, V,E) be a bipartite graph, with |V | = n and |U | = m. If there

is an ordering S = (v1, ..., vn) of V such that, for every u 2 U , the neighborhood of u is

circularly consecutive with relation to S, then B is a circular-arc bigraph.

Proof. Start with a circle C of length n + 1. For each vi 2 V , draw an arc (i, i + 1) 2 I
to represent it. Then, for each u 2 U whose neighborhood ranges from vi to vj , we draw
an arc (i+ 1

2
, j + 1

2
) 2 E to represent it. (C, I,E) corresponds to B.

Lemma 1 implies that graphs such as generalized crowns and bipartite permuta-

tion graphs are all circular-arc bigraphs.

Definition 1. Let a > 0 and 0  b < a. The generalized crown graph Sa
b is a bipartite

graph with vertex set {u0, ..., ua−1} [ {v0, ..., va−1}, such that the neighborhood of vi is

U − {ui, ..., ui+b}.

Definition 2. Let G = (V,E) be a graph. Then G is a permutation graph if there exist

two permutations P1, P2 of its vertex set such that, if the index of v in P1 is less than that

of w, then {v, w} 2 E if and only if the index of v in P2 is greater than that of w. A

bipartite permutation graph is simply a permutation graph that is bipartite.

Let A be a family of arcs on a circle C. An arc B of C is said to minimally

intersect A 2 A if it intersects A without intersecting another arc A0 2 A such that
A0 ⇢ A. Lemma 2 allows us to describe a type of forbidden structure for the class.

Lemma 2. Let 0 < m < n, and let A be a family of arcs on a circle C, with |A| = n,

such that no two arcs have coinciding endpoints. There are at most n subfamilies A0 ⇢ A
such that |A0| = m for which it is possible to draw an arc on C that intersects every arc

of A0
without intersecting any of A− A0

.

Proof. Let B be an arc on C (B 62 A) that intersects exactly m arcs of A. Let A0 be
the family of arcs intersected by B, and let S = (A1, ..., Am) be the order in which the
counter-clockwise endpoint of each arc in A0 is first encountered by trailing the circle
clockwise from the clockwise endpoint of B. Let Ai be the first arc in the order S that
is minimally intersected by B. We shall call Ai the first minimally intersected arc of
B. Notice that A0 contains all arcs that contain Ai. Let k > 0 be the number of such
arcs. In particular, notice that every arc in {A1, ..., Ai−1} contains Ai, otherwise, either
they would be minimally intesercted themselves, or they’d contain another arc that is
minimally intersected and comes before Ai in S. The other arcs that A0 contains will
be exactly the first m − k arcs that are not contained in (nor contain) Ai and whose
counter-clockwise endpoints come immediately after the counter-clockwise endpoint of
Ai. Therefore, if Ai is the first minimally intersected arc of a new arc B that intersects
m arcs, A0 will always be the same. That implies that for each arc A 2 A, there is at
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most one subfamily of m arcs which can be intersected by a new arc with A being the first
minimally intersected arc (there might also be none, for instance, if an arc is contained in
more than m − 1 arcs). Therefore, there are at most n subfamilies of m arcs that can be
exclusively intersected by a new arc.

Corollary 3. Let B = (U, V,E) be a bipartite graph, such that |U | = n, |V | = n + 1,

and there is a k such that |N(v)| = k for all v 2 V . If the neighborhoods of the vertices

of V are all pairwise distinct, then B is not a circular-arc bigraph.

Figure 1 contains a handful of forbidden subgraphs we found for the class.

Figure 1. List of forbidden subgraphs we found for the circular-arc bigraph class.

2.1. Studies on the Helly Subclass

The concept of Helly families [Helly 1923] lends itself to the definition of many
extensively studied graph classes [Szwarcfiter 1997, Groshaus and Szwarcfiter 2007,
Groshaus and Szwarcfiter 2008]. An adaptation of the definition of Helly fam-
ilies, known as bipartite-Helly, was formulated by Groshaus and Szwarcfiter
[Groshaus and Szwarcfiter 2010], and allows us to define Helly-like properties be-
tween pairs of families. For the results in this section, we first introduce interval bigraphs

in Definition 3, and then Helly circular-arc bigraphs and Helly interval bigraphs in
Definition 4, loosely based on the bipartite-Helly concept.

Definition 3. A bipartite graph B = (U, V,E) is an interval bigraph if it admits a bi-

interval representation. A bi-interval representation of B is a mapping between U [ V
and a family of intervals on the real number line, such that u 2 U and v 2 V are

neighbors if and only if their corresponding intervals intersect.

For the following definition, we consider a biclique of a given graph to be a
maximal bipartite-complete induced subgraph.

Definition 4. A bipartite graph B is a Helly circular-arc bigraph if it admits a Helly bi-

circular-arc model. A bi-circular-arc model (C, I,E) is Helly if, for any biclique in the

graph it represents, there is a point p 2 C such that all arcs corresponding to vertices of

the biclique contain p. A bipartite graph B is a Helly interval bigraph if it admits a Helly

bi-interval representation. A bi-interval representation is Helly if, for any biclique of the

graph it represents, the intervals corresponding to the vertices of the biclique all contain

a common point p in the real number line.

It is easy to verify that both classes are hereditary over induced subgraphs, and
that Helly interval bigraphs are a proper subclass of Helly circular-arc bigraphs. Lemma
4 presents a sufficient condition for a graph to be a Helly circular-arc bigraph. We denote
by (C2k, S`) the graph obtained by adding ` isolated vertices to a C2k.

Lemma 4. Let G be a bipartite graph. If G is K1,3-free and (C2k, S`)-free (with k > 2),

then G is a Helly circular-arc bigraph.
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It is easy to verify that both classes are hereditary over induced subgraphs, and
that Helly interval bigraphs are a proper subclass of Helly circular-arc bigraphs. Lemma
4 presents a sufficient condition for a graph to be a Helly circular-arc bigraph. We denote
by (C2k, S`) the graph obtained by adding ` isolated vertices to a C2k.

Lemma 4. Let G be a bipartite graph. If G is K1,3-free and (C2k, S`)-free (with k > 2),

then G is a Helly circular-arc bigraph.

Proof. If the graph contains a C2n, for n > 2, and doesn’t contain any induced K1,3 nor
any isolated vertices, then its only component is the C2n, which can easily be verified to
be a Helly circular-arc bigraph. Now suppose the graph does not contain a C2n, for n > 2.
Then, since the graph is K1,3-free, every single one of its components is either a path or a
K2,2. It is easy to verify that both paths and the K2,2 are Helly interval bigraphs, meaning
that a graph that has those graphs as connected components also is.

Lemma 4 is a simple sufficient condition for the Helly subclass, serving to prune
the search space for forbidden structures. It is known to not be necessary, since K1,3 by
itself is a Helly circular-arc bigraph.
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