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Abstract. From Carathéodory’s theorem arises the definition of the
Carathéodory number for graphs. This number is well-known for mono-
phonic and Triangle-path convexities. It is limited for some classes of graphs on
P3 and geodesic convexities but is known to be unlimited only on P3-convexity.
In this paper, we prove that the Carathéodory number is unlimited on geodesic
convexity.

Resumo. Do teorema de Carathéodory surge a definição do número de
Carathéodory para grafos. Este número é bem conhecido nas convexidades
monofônica e de caminho de triângulos. Ele é limitado para algumas classes de
grafos nas convexidades P3 e geodésica, mas apenas na convexidade P3 sabe-se
que ele é ilimitado. Neste artigo, nós provamos que o número de Carathéodory
é ilimitado na convexidade geodésica.

1. Introduction

In 1911, Constantin Carathéodory published a theorem stating that every u in the convex
hull of a subset S ⊆ Rd, is also in the convex hull of a subset F of S of order at most
d + 1 [Carathéodory 1911] . The ideas provenient from this theorem, brought to light an
invariant in graph theory, called Carathéodory number, widely studied since then. We will
focus on the study of this number on geodesic convexity.

In this article, we used the following definition for the Carathéodory number of a
graph. A subset S of vertices is a Carathéodory set if there exists a vertex in the convex
hull of S which does not belong to the convex hull of the S\{s} for every s ∈ S. The
Carathéodory number c(G) of a graph G is the maximum cardinality of a Carathéodory
set [E. M. M. Coelho and Szwarcfiter 2013].

The Carathéodory number is well-known for some convexities. On monophonic
convexity, c(G) = 1 for complete graphs, and 2 for other graphs [Duchet 1988].
On Triangle-path convexity c(G) = 2 [Changat and Mathew 1999]. On P3-convexity,
c(G) ≤ 3 for multipartite tournaments [D.B. Parker and Wolf 2008], however, it is un-
limited considering general graphs [E. M. M. Coelho and Szwarcfiter 2013]. Considering
the geodesic convexity, [M.C. Dourado 2013] showed that it is NP-complete to determine
whether c(G) is at least a given k, even when restricted to bipartite graphs, and that c(G)
is at most 3 for split graphs.

This article brings a new result on this matter: the Carathéodory number is unlim-
ited on geodesic convexity.
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d + 1 [Carathéodory 1911] . The ideas provenient from this theorem, brought to light an
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Carathéodory number c(G) of a graph G is the maximum cardinality of a Carathéodory
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2. Preliminaries
Let G be a finite graph given by a set of vertices V (G) and a set of edges E(G). A set
C of subsets of V (G) is a convexity if ∅, V (G) ∈ C and C is closed under intersections.
The elements of C are called convex sets. Given a set S ⊂ V , the convex hull of S is the
smallest convex set H(S) ∈ C, such that S ⊆ H(S).

Several convexities are defined by a set P of paths in a graph. In this scenario, a
subset C ∈ V (G) is convex when for all x, y ∈ C, if p ∈ P is a path between x and y,
then all vertices in p are also in C.

The geodesic convexity is obtained when P is the set of all geodesics, i.e., all the
shortest paths. A chord of a path p in a graph G is any edge joining a pair of nonadjacent
vertices of P . The monophonic convexity is defined using the set of all chordless paths,
i.e., induced paths. The triangle-path convexity arise from the set of all paths in which
every chord is a short chord, i.e., chords joining vertices at distance 2 apart. And the
P3-convexity, also known as two-path convexity, is obtained from the set of all paths of
length 2.

The Carathéodory number of a graph G, written as c(G), is the smallest integer k
such that for every subset S of V (G) and every element s in H(S), there is a subset F of
S with |F | ≤ k and u ∈ H(F ).

A subset S ⊂ V (G) is called Carathéodory set when ∂H(S) = H(S)\⋃
s∈S H(S\{s}) is nonempty. We can also define the Carathéodory number as the maxi-

mum cardinality of a Carathéodory set [E. M. M. Coelho and Szwarcfiter 2013].

3. Geodesic Carathéodory Number is Unlimited
We now construct inductively a family of graphs Gi, with i ≥ 1 that have an unlimited
Carathédory number on geodesic convexity:

• G1 is the graph with V (G1) = {v1}, and E(G1) = ∅;
• G2 is the graph with V (G2) = V (G1) ∪ {v2, v3}, and E(G2) = E(G1) ∪
{v1v3, v2v3};

• G3 is the graph with V (G3) = V (G2) ∪ {v4, v5, v6}, and E(G3) = E(G2) ∪
{v1v4, v2v4, v3v4, v3v5, v4v6, v5v6};

• Gi+1, for i ≥ 3, is the graph with V (Gi+1) = V (Gi) ∪ {vn−2, vn−1, vn}, and
E(Gi+1) = E(Gi)∪{vn−4vn−2, vn−3vn−2, vn−2vn−1, vn−1vn, v4vn} where n = 3i.

Theorem 1. Every Gi, constructed as above, has a Carathéodory set of cardinality i.

Proof. For i = 1, S1 = {v1} is a Carathéodory set of G1. For i = 2, S2 = {v1, v2}
and v3 ∈ ∂H(S2). We will now show by induction that Si = {v1, v2} ∪ {v3j | 2 ≤
j ≤ i} is a Carathéodory set of Gi, with cardinality i, for i ≥ 3. For i = 3, note that
v5 ∈ ∂H(S3). For i = 4, we have that v7, v8 ∈ ∂H(S4) and for i = 5, one can see that
∂H(S5) = {v10, v11}. This proves that Si is a Carathéodory set of Gi, with cardinality i,
for 1 ≤ i ≤ 5.

Take i ≥ 5 and assume (as inductive hypothesis) that the longest geodesic of Gi

is at most 4, and Si is a Carathéodory set of cardinality i, with {vn−5, vn−4} = ∂H(Si),
where n = 3i.
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Take Si+1 = Si ∪ {vn}, and note that all vertices in Si+1 are connected to v4,
and that any other vertex in V (Gi+1) is connected to at least one vertex in Si+1, by con-
struction of Gi+1. Therefore, the longest geodesic of Gi+1 is at most 4. There are three
edges connecting the vertices in V (Gi) to those new vertices added to build Gi+1, namely
vn−4vn−2, vn−3vn−2, and v4vn. Choose any two vertices x, y in V (Gi), other than v4 (note
that the geodesic distance of any vertex to v4 is at most 2). If you take a path between
x and y that uses both edges vn−4vn−2 and vn−3vn−2, it is bigger then their geodesic in
at least one unit, since vn−4vn−3 ∈ E(Gi). If you take a path between x and y that uses
vn−4vn−2 or vn−3vn−2, and v4vn, this path is bigger than 4. So, by inductive hypothesis,
in Gi+1 no shorten path was introduced between two vertices of Gi, implying that H(Si)
in Gi+1 is exactly V (Gi).

All the geodesics between vn and another vertex in Si+1 have size 2, and between
vn and another vertex not in Si+1 have size at most 3. Take any vertex in V (Gi) that is not
in Si+1, other than vn−4. If a path between such vertex and vn uses either edge vn−4vn−2

or vn−3vn−2, it is bigger than 3, so it is not a geodesic. The geodesics between vn−4 and
vn are vn−4vn−2vn−1vn and vn−4vn−3v4vn. This means the only minimum path between
a vertex in V (Gi) and vn that uses the vertices vn−2 and vn−1 is the one between vn−4

and vn. Without loss of generality, using the inductive hypothesis, we can conclude that
∂H(Si+1) = {vn−2, vn−1} (meaning Si+1 is a Carathéodory set), and |Si+1| = i + 1,
completing the proof.

Corollary 1. The Carathéodory number on geodesic convexity is unlimited.

Proof. By Thereom 1, for all integer i ≥ 1, there is a Carathéodory set of cardinality i in
Gi. We conclude that c(Gi) ≥ i and thus yields the results.
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