
879

ETC - 1º Encontro de Teoria da Computação

An efficient algorithm for the Closest String Problem

Omar Vilca1, Rosiane de Freitas1

1Institute of Computation – Federal University of Amazonas (UFAM)
Manaus, AM – Brasil

{omarlatorre,rosiane}@icomp.ufam.edu.br

Abstract. The closest string problem that arises in computational molecular
biology and coding theory is to find a string that minimizes the maximum Ham-
ming distance from a given set of strings, the CSP is NP-hard problem. This
article proposes an efficient algorithm for this problem with three strings. The
key idea is to apply normalization for the CSP instance. This enables us to de-
compose the problem in five different cases corresponding to each position of the
strings. Furthermore, an optimal solution can be easily obtained in linear time.
A formal proof of the algorithm will be presented, also numerical experiments
will show the effectiveness of the proposed algorithm.

1. Introduction

String selection problems are among the most important topics facing researchers in
computational biology. Combinatorial optimization is a possible approach to solving
selection sequences problems. There are some previously exact algorithms for CSP
with 3-sequences [Gramm et al. 2001, Liu et al. 2011], in both papers presented algo-
rithms in linear time. Meneses obtains optimal solutions via integer programming
[Meneses et al. 2004, Meneses et al. 2005], In [Vilca 2013] solves this problem by cut-
ting planes algorithm.

The CSP is defined as follows: Given a finite set S = {s1, s2, . . . , sn} of
strings with alphabet Σ, each string with length m, find a center string t of length m
minimizing d, such that for every string si ∈ S, dH(t, si) ≤ d, we mean the Ham-
ming distance between t and si. This is a NP-hard problem according to Frances and
Litman[Frances and Litman 1997]. In the following, we show a formal proof of correct-
ness from an efficient linear time algorithm for CSP instances with 3-sequences, compu-
tational experiments are reported, and finally, concluding remarks are presented.

2. Efficient linear time algorithm for 3-sequences

The 3-CSP-A algorithm is designed based on the isomorphic instance
[Gramm et al. 2001]. An exact algorithm for 3-CSP with alphabet Σ = 2 is found
in [Liu et al. 2011].

Definition 1 (Normalized instance) Let S an instance, that is, S = {s1, . . . , sn}, where
|si| = m, with 1 ≤ i ≤ n and 1 ≤ j ≤ m. Let Mn×m a matrix of characters from S each

XXXVI Congresso da Sociedade Brasileira de Computação

880

column is a position of the strings in S, so we have M [c1, c2, . . . , cm]

φ(c′j)1≤i≤n,1≤j≤m =




λ1 if σ1 ∈ cj : maxσi
|cij = σ1|

λ2 else if σ2 ∈ cj : maxσi
|cij \ σ1 = σ2|

. . .
λk else if σk ∈ cj : maxσi

|cij \ {σ1, . . . , σk−1} = σk|

Let M ′[c′1, . . . , c
′
m], and S ′ an instance based on characters from M ′, as a result S ′ is

called normalized instance from S.

Theorem 1 Let a CSP instance with 3-sequences, which denotes 3-CSP, that is, S =
{si ∈ Σm, i = 1, 2, 3} with alphabet |Σ| > 2, so the 3-CSP-A algorithm always finds an
exact solution to 3-CSP.

Proof 1 Let S = {s1, s2, s3} a 3-CSP instance, let φ a bijective function that trans-
forms S into S ′, called normalized instance that is equivalent to S for φ according to
[Gramm et al. 2001]. Let M3×m a matrix of characters from S each column is a position
of the strings in S, so we have M [c1, c2, . . . , cm] with m length of strings in S

φ(cj)1≤i≤3,1≤j≤m =




a if σ1 ∈ cj : maxσi
|cij = σ1|

b else if σ2 ∈ cj : maxσi
|cij \ σ1 = σ2|

c else if σ3 ∈ cj : maxσi
|cij \ {σ1, σ2} = σ3|

We assume wlog five different cases in ci, that is, v1 = aaa, v2 = baa, v3 = aba,
v4 = aab and v5 = abc. In order to get an optimal solution, divide M ′[c1, c2, . . . , cm] in
blocks of 3-length and 2-length, consider all possible combinations of {v2, . . . , v5}, then
drop v1 since it is a trivial case.

In the case of 3-length blocks with repetition columns we have, dH(vivjvk, baa) =
2 and without repetitions dH(vivjvk, aaa) = 1 for 2 ≤ i, j, k ≤ 4 now inserting v5 in
our analysis with column repetition dH({v5vivj, viv5vj, vivjv5}, aaa) = 2, and finally
dH(v5v5v5, abc) = 2.

In the case of 2-length blocks we have, dH(vivj, aa) = 1 and dH(vivi, ab) = 1
with 2 ≤ i, j ≤ 4 after add v5, dH(v2v5, aa) = 1, dH(v3v5, ab) = 1, dH(v4v5, ac) = 1,
and finally dH(v5v5, aa) = 2.

So in truth we are interested in the cases when the Hamming distance is equals
to 1. Let lj a number that accounts for each time the case vj is repeated where j ∈
{1, 2, . . . , 5}, let t′ a string of size m, an optimal solution of S ′, in order to minimize the
maximum Hamming distance dH(t

′, S ′), we verified various reductions for each case vj
presented. We are checking each kind of reductions for 2-length and 3-length blocks.

Assume wlog l2 ≤ l3 ≤ l4, then l3 = l3 − l2, l4 = l4 − (l2 + l3), after these
calculations, one of them is greater or equal to zero. let ρiab = �1

2
li� for 2 ≤ i ≤ 4

• If l5 mod 3 > 0 and {l2, l3, l4} mod 2 > 0 then {ρ5ac, ρab, ρaa} = 1

• If l5 mod 2 > 0 then ρ5ab = 1

Let t a string that represents an optimal solution of 3-CSP-A, with 1 ≤ i ≤ m, we

881

ETC - 1º Encontro de Teoria da Computação

column is a position of the strings in S, so we have M [c1, c2, . . . , cm]

φ(c′j)1≤i≤n,1≤j≤m =




λ1 if σ1 ∈ cj : maxσi
|cij = σ1|

λ2 else if σ2 ∈ cj : maxσi
|cij \ σ1 = σ2|

. . .
λk else if σk ∈ cj : maxσi

|cij \ {σ1, . . . , σk−1} = σk|

Let M ′[c′1, . . . , c
′
m], and S ′ an instance based on characters from M ′, as a result S ′ is

called normalized instance from S.

Theorem 1 Let a CSP instance with 3-sequences, which denotes 3-CSP, that is, S =
{si ∈ Σm, i = 1, 2, 3} with alphabet |Σ| > 2, so the 3-CSP-A algorithm always finds an
exact solution to 3-CSP.

Proof 1 Let S = {s1, s2, s3} a 3-CSP instance, let φ a bijective function that trans-
forms S into S ′, called normalized instance that is equivalent to S for φ according to
[Gramm et al. 2001]. Let M3×m a matrix of characters from S each column is a position
of the strings in S, so we have M [c1, c2, . . . , cm] with m length of strings in S

φ(cj)1≤i≤3,1≤j≤m =




a if σ1 ∈ cj : maxσi
|cij = σ1|

b else if σ2 ∈ cj : maxσi
|cij \ σ1 = σ2|

c else if σ3 ∈ cj : maxσi
|cij \ {σ1, σ2} = σ3|

We assume wlog five different cases in ci, that is, v1 = aaa, v2 = baa, v3 = aba,
v4 = aab and v5 = abc. In order to get an optimal solution, divide M ′[c1, c2, . . . , cm] in
blocks of 3-length and 2-length, consider all possible combinations of {v2, . . . , v5}, then
drop v1 since it is a trivial case.

In the case of 3-length blocks with repetition columns we have, dH(vivjvk, baa) =
2 and without repetitions dH(vivjvk, aaa) = 1 for 2 ≤ i, j, k ≤ 4 now inserting v5 in
our analysis with column repetition dH({v5vivj, viv5vj, vivjv5}, aaa) = 2, and finally
dH(v5v5v5, abc) = 2.

In the case of 2-length blocks we have, dH(vivj, aa) = 1 and dH(vivi, ab) = 1
with 2 ≤ i, j ≤ 4 after add v5, dH(v2v5, aa) = 1, dH(v3v5, ab) = 1, dH(v4v5, ac) = 1,
and finally dH(v5v5, aa) = 2.

So in truth we are interested in the cases when the Hamming distance is equals
to 1. Let lj a number that accounts for each time the case vj is repeated where j ∈
{1, 2, . . . , 5}, let t′ a string of size m, an optimal solution of S ′, in order to minimize the
maximum Hamming distance dH(t

′, S ′), we verified various reductions for each case vj
presented. We are checking each kind of reductions for 2-length and 3-length blocks.

Assume wlog l2 ≤ l3 ≤ l4, then l3 = l3 − l2, l4 = l4 − (l2 + l3), after these
calculations, one of them is greater or equal to zero. let ρiab = �1

2
li� for 2 ≤ i ≤ 4

• If l5 mod 3 > 0 and {l2, l3, l4} mod 2 > 0 then {ρ5ac, ρab, ρaa} = 1

• If l5 mod 2 > 0 then ρ5ab = 1

Let t a string that represents an optimal solution of 3-CSP-A, with 1 ≤ i ≤ m, we

have:

s1i = s2i ti = s1i = s2i
s1i = s2i s2 �= s3 ρ2ab > 0 ti = s3i
s1i �= s2i s1i = s3i ρ3ab > 0 ti = s2i
s1i �= s2i s1i �= s3i s2i = s3i ρ4ab > 0 ti = s1i
s1i �= s2i s2i �= s3i s2i �= s3i ρ5ab > 0 ti = s2i
s1i �= s2i s2i �= s3i s2i �= s3i ρ5ac > 0 ti = s3i
s1i �= s2i s2i �= s3i s2i �= s3i ρab > 0 ti = s2i
s1i �= s2i s2i �= s3i s2i �= s3i ρaa > 0 ti = s1i

Thus the theorem holds.

Example 1 Let S1 a 3-CSP instance, and let S2 its normalized instance, we have:

S1 =




AGTATTGGTG
CCCTTTGAGA
TAGTGGGTCT

S2 =




aaabaaaaaa
bbbaaaabbb
cccabbaccc

After using the 3-CSP-A algorithm we have an optimal solution for the normalized
instance S2, that is, t = caccaaaaaa, with Hamming distance dH(t, S2) = 4.

Algorithm 1: Linear time algorithm 3-CSP-A, for 3-sequences.
Procedure Algorithm 3-CSP-A (n,m, S)
n : number of strings
m : size of strings
S : a 3-CSP instance, that is, S = {s1, s2, s3}
Input : Normalized Instance S = {s1, s2, s3}
Output: optimal solution t ∈ Σm : dH(t, S) ≤ d
// Let vi: number of times that {aaa, aab, aba, baa, abc} appears in the jth column with 1 ≤ i ≤ 5 and 1 ≤ j ≤ m
if |S| = 3 then

smallest ← getSmallest(v2, v3, v4);
// subtract the lowest value for cases: {aab,aba,baa}
v2 ← v2 − smallest;
v3 ← v3 − smallest;
v4 ← v4 − smallest;
for i=1 to m do

if s1i = s2i then
ti ← s1i ;

end if
else if s2i = s3i then

ti ← s2i ;
else if s1i = s3i then

ti ← s1i ;
// when all the characters are different, case: abc
else if v4 > 0 then

ti ← s1i ; v4 ← v4 − 1;
else if v3 > 0 then

ti ← s2i ; v3 ← v3 − 1;
else if v2 > 0 then

ti ← s3i ; v2 ← v2 − 1;
else

ti ← sji ; //where j ∈ {1, 2, 3} one of them each time
end if

end if
end if

end for
end if

XXXVI Congresso da Sociedade Brasileira de Computação

882

Instance 2 Characters 4 Characters 20 Characters
m seed Val time(s) seed Val time(s) seed Val time(s)
100 542319 27 < 1 791034 48 < 1 691425 63 < 1
200 7121 52 < 1 52151 91 < 1 351554 124 < 1
300 64874 77 < 1 68724 132 < 1 98121 183 < 1
400 6487 112 < 1 193185 180 < 1 246754 244 < 1
500 94115 124 < 1 15364 215 < 1 658745 311 < 1
600 5419 153 < 1 5419 260 < 1 154525 373 < 1
700 43212 180 < 1 524514 306 < 1 487754 437 < 1
800 2454 215 < 1 55364 354 < 1 754812 494 < 1
900 645387 234 < 1 6487 389 < 1 722451 557 < 1
1000 94315 260 < 1 153364 444 < 1 34567 616 < 1
2000 264554 508 < 1 6487 881 1 65743 1219 1
3000 68174 765 2 2454 1305 2 4432 1857 1
4000 4212 1003 3 53214 1760 3 543 2484 3
5000 722312 1278 5 934145 2188 6 344 3099 5

Table 1. Linear time algorithm 3-CSP-A, for 3-sequences.

3. Computational Experiments and Results
Some computational experiments was done involving forty two 3-CSP instances, using
the instance generator described in the literature [Meneses et al. 2004]. These instances
consider alphabets with two, four and twenty characters, which obtained optimal solu-
tions using the 3-CSP-A algorithm presented in the Section 2. The header on Table 2
has the following meanings: the first column indicates the tested instance, indicating the
parameters (m) size of string; the columns (2,4, and 20 Characters) indicates the (seed)
number to generate a random instance, (Val) values of optimal solutions to 3-sequences
for binary, DNA, and protein types as well as their execution times in seconds.

4. Final Remarks
We proposed an exact algorithm for the special case of CSP with 3-sequences and alphabet
size |Σ| > 2,given the corresponding theoretical analysis.

References
Frances, M. and Litman, A. (1997). On covering problems of codes. Theory of Computing

Systems, 30(2):113–119.

Gramm, J., Niedermeier, R., and Rossmanith, P. (2001). Exact solutions for closest string
and related problems. In Proceedings of the 12th International Symposium on Algo-
rithms and Computation, ISAAC ’01, pages 441–453.

Liu, X., Liu, S., Hao, Z., and Mauch, H. (2011). Exact algorithm and heuristic for the
closest string problem. Computers & Operations Research, 38(11):1513–1520.

Meneses, C., Lu, Z., Oliveira, C., and Pardalos, P. (2004). Optimal solutions for the
closest string problem via integer programming. INFORMS Journal on Computing,
16(4):419–429.

Meneses, C., Oliveira, C., and Pardalos, P. (2005). Optimization techniques for string
selection and comparison problems in genomics. Engineering in Medicine and Biology
Magazine, IEEE, 24(3):81–87.

Vilca, O. L. (2013). Métodos para problemas de seleção de cadeias de caracteres. Master’s
thesis, Universidade Federal do ABC, Santo André, São Paulo.

