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Instance 2 Characters 4 Characters 20 Characters
m seed Val time(s) seed Val time(s) seed Val time(s)
100 542319 27 < 1 791034 48 < 1 691425 63 < 1
200 7121 52 < 1 52151 91 < 1 351554 124 < 1
300 64874 77 < 1 68724 132 < 1 98121 183 < 1
400 6487 112 < 1 193185 180 < 1 246754 244 < 1
500 94115 124 < 1 15364 215 < 1 658745 311 < 1
600 5419 153 < 1 5419 260 < 1 154525 373 < 1
700 43212 180 < 1 524514 306 < 1 487754 437 < 1
800 2454 215 < 1 55364 354 < 1 754812 494 < 1
900 645387 234 < 1 6487 389 < 1 722451 557 < 1
1000 94315 260 < 1 153364 444 < 1 34567 616 < 1
2000 264554 508 < 1 6487 881 1 65743 1219 1
3000 68174 765 2 2454 1305 2 4432 1857 1
4000 4212 1003 3 53214 1760 3 543 2484 3
5000 722312 1278 5 934145 2188 6 344 3099 5

Table 1. Linear time algorithm 3-CSP-A, for 3-sequences.

3. Computational Experiments and Results
Some computational experiments was done involving forty two 3-CSP instances, using
the instance generator described in the literature [Meneses et al. 2004]. These instances
consider alphabets with two, four and twenty characters, which obtained optimal solu-
tions using the 3-CSP-A algorithm presented in the Section 2. The header on Table 2
has the following meanings: the first column indicates the tested instance, indicating the
parameters (m) size of string; the columns (2,4, and 20 Characters) indicates the (seed)
number to generate a random instance, (Val) values of optimal solutions to 3-sequences
for binary, DNA, and protein types as well as their execution times in seconds.

4. Final Remarks
We proposed an exact algorithm for the special case of CSP with 3-sequences and alphabet
size |Σ| > 2,given the corresponding theoretical analysis.
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Stochastic scenario generation: An empirical approach

A. D. Oliveira1, T. P. Filomena 1

1Business School, Federal University of Rio Grande do Sul (UFRGS)

alan.delgado@ufrgs.br, tpfilomena@ea.ufrgs.br

Abstract. We briefly discuss the differences among several methods to generate

a scenario tree for stochastic optimization. First, the Monte Carlo Random sam-

pling is presented, followed by the Fitting of the First Two Moments sampling,

and lastly the Michaud sampling. Literature results are reviewed, taking into

account distinctive features of each kind of methodology. According to the lite-

rature results, it is fundamental to consider the problem’s unique characteristics

to make the more appropriate choice on sampling method.

1. Introduction
Stochastic optimization (SP) is used to model environments in a more realistic manner
when uncertainty is inherent. Many situations in the real world are characterized by ran-
dom events, which often are viewed as random variables. Random variables are combined
into subsets, for that we denote by ⇠. So that, we associate a collection of random events
with a probability space, which contains a collection of all possible events and its pro-
bability. From these concepts, we formalize a generic stochastic optimization problem,
based on [Dempster et al. 2011], as denoted by equation (1)

max
x2X

Z

F

f(x, ⇠)dF (⇠), (1)

where f is the value function defined in terms of both uncertainty and decision spaces,
x is the decision variable defined over the feasible set X ⇢ R, and ⇠ is a I-dimensional
random realization of random variable ⇠ that is defined by the cumulative distribution
function F : RI ! [0, 1]. Here, dF represents the probability measure on the probability
space F of the underlying multivariate stochastic process.

The literature has discussed the way of finding the best approximation of the
continuous distribution; efforts concentrating, for example, on having state-space dis-
tribution moments matched [Høyland et al. 2003, Høyland and Wallace 2001], minimi-
zing Wassertein probability metrics [Heitsch and Romisch 2005, Romisch 2003], Latin
hypercube sampling [McKay et al. 1979], or Michaud sampling [de Oliveira et al. 2016].
The main goal of this research is to design a discrete-space approximation model which
approximates a continuous-space stochastic process. Moreover, empirical tests have
been made in order to find the most suitable sampling option, [Dempster et al. 2011,
Homem-de-Mello and Bayraksan 2014]. According to [Pflug 2001], continuous pro-
blems become easier to be solved if we reduce them to discrete-state multiperiod opti-
mization problems. This logic structure, which contains a pertaining history process, may
be seen as a tree. As the scenario generation methodology becomes a key part of process
of stochastic optimization, we turn our attention to distinct manners of generating scena-
rios. We consider the Monte Carlo Random sampling detailed in Section 2, the Fitting of



XXXVI Congresso da Sociedade Brasileira de Computação

884

First Two Moments sampling presented at Section 3, and the Michaud sampling discussed
in Section 4. Following [de Oliveira et al. 2016], we concentrate our efforts on generating
scenarios for Asset Liability Management (ALM).

2. ALM with the Monte Carlo Random sampling

The traditional way to generate a scenario tree for ALM is through Monte Carlo sam-
pling, where uniformly distributed pseudo-random numbers are appropriately trans-
formed into the target distribution, [Dempster et al. 2011]. Hence, we generate
W1, . . . ,WI random vectors from the standard normal distribution. As noted by
[Homem-de-Mello and Bayraksan 2014], in this case, the vectors W1, . . . ,WI are mu-
tually independent. It is the detail that characterize this sampling method. This method is
more detailed in [Glasserman 2003].

According to [Kouwenberg 2001], though this approach may be quite intuitive,
when the states of scenario tree are sampled randomly, the mean and covariance matrix
will not be correctly specified in most nodes of the tree. As this information is an input
for the optimization model, the optimizer chooses an investment strategy from erratic or
miss specified parameters. An obvious way to deal with this problem is to increase the
number of nodes in the randomly sample event tree. However, the stochastic program
might become computationally intractable due to the exponential growth rate of the tree.

3. ALM with the Fitting the First Two Moments sampling

In this approach, proposed by [Høyland and Wallace 2001], we construct an event tree
that fits the mean and the covariance matrix of the underlying distribution. Besides that,
[Høyland et al. 2003] provides a source code to this method. The first step is to generate
the random vectors from the standard normal distribution, in the same way as described
in Section 2. After that, with the I random vectors, we transform them to exhibit a given
correlation by pre-multiplying the vectors with lower triangular matrix L of covariance
matrix ⌃ ,

W>
j = LWj,⌃ = LL>, j = 1, . . . , I, (2)

where L can be obtained by applying Cholesky decomposition. In another words, as
mentioned by [Kouwenberg 2001], we specify that the average of the disturbances should
be zero, and they should have a covariance matrix equal to ⌃. Therefore, we may denote
this matching as (3) and (4),

1

S

SX

s=1

Wjs = 0 8j 2 1, ..., I, (3)

1

S − 1

SX

s=1

WjsWis = ⌃ij 8j, i 2 1, ..., I, (4)

As mentioned by [Kouwenberg 2001, Dempster et al. 2011, Löhndorf 2016], it is possible
to argue that this sampling outperform other methods as Monte Carlo Random sampling,
Wasserstein Distance sampling, or even Latin Hypercube sampling.
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As mentioned by [Kouwenberg 2001, Dempster et al. 2011, Löhndorf 2016], it is possible
to argue that this sampling outperform other methods as Monte Carlo Random sampling,
Wasserstein Distance sampling, or even Latin Hypercube sampling.

4. ALM with the Michaud Sampling
Another approach is to simulate the generation of scenarios for multiple trees, and
to take the solution of an optimization problem of smaller size for each tree. This
technique has some similarities with the resampled efficient frontier method propo-
sed by [Michaud and Michaud 2008] for the construction of portfolio of risky secu-
rities and it is applied by [de Oliveira et al. 2016]. This sampling has four steps.
First, we define the number of trees to be solved for each parametrization, see, e.g.,
[Michaud and Michaud 2008]. The value of this realizations must be sufficiently large
so that the portfolio allocations are stable and small enough, ensuring that the approach
does not become computationally prohibitive. Once the number of instances is defined,
the second step is to generate the scenarios for each tree in accordance with its model. In
Step 3, we solve to optimality the optimization problem corresponding to each tree. In
Step 4, we evaluate the results based on the optimal solutions of the trees.

The solutions provided by the resampling avoid corner allocations, i.e. extreme
weight allocations, which may be seen in the classical mean-variance portfolio selection
model. Furthermore, it decrease the estimation bias, [Fletcher and Hillier 2001]. Howe-
ver, [Scherer 2002] draws attention to when long and short positions are allowed. In this
case, the resampled efficient frontier does not present notorious differences from the clas-
sical efficient frontier.

5. Final Considerations
In the previous sections, we addressed some literature results to identify and assess
strengths and weaknesses of different scenario generation tree methods for stochastic pro-
gramming. The main objective of these sampling methods is to consider many scenarios
while preserving computational tractability. We noticed that main drawback of Monte
Carlo Random sampling is the need to assign a large number of scenarios to achieve bet-
ter results. If we consider, for example, a model with I independent random variables,
each with only two possible alternatives; the total number of scenarios is thus 2I for only
one stage, and so even for moderate values of I it becomes impractical to take all possible
outcomes into account. In case of the Fitting of the First Two Moments, although it has
achieved good performance [Kouwenberg 2001, Löhndorf 2016], [Dempster et al. 2011]
outline some weakness when it is applied to the risk control problems given underestima-
tion of the problem’s volatility. If we consider the Michaud sampling, the literature have
not yet found a consensus on the pros and cons of the results delivered by resampling
[Markowitz and Usmen 2003, Ulf and Raimond 2006, Becker et al. 2015]. Furthermore,
this method still lacks a theoretical foundation. Therefore, as we can see, due to vulnera-
bilities of each sampling method, the choice of the appropriate sampling method depends
on the problem to be modeled and its specific characteristics.
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