A Review on VR in STEM Education with Students and Teachers oriented Challenges

Muhammad Ahsan Federal University of Ouro Preto Ouro Preto, Minas Gerais, Brazil muhammad.ahsan@aluno.ufop.edu.br Ulfat Tahireen Quaid-e-Azam University Islamabad, ICT, Pakistan ulfattahireen21@gmail.com Filza Javed
Baku Engineering University
Khirdalan, Absheron, Azerbaijan
engg.filza.javed@gmail.com

Saul Delabrida

Federal University of Ouro Preto Ouro Preto, Minas Gerais, Brazil saul.delabrida@ufop.edu.br

Daniel L. Guidoni Federal University of Ouro Preto Ouro Preto, Minas Gerais, Brazil guidoni@ufop.edu.br

Abstract

This research paper investigates the applications of Virtual Reality (VR) in education specifically targeting Science, Technology, Engineering, and Mathematics (STEM). This article explores how VR improves student learning outcomes, knowledge retention, engagement, and problem solving or critical thinking. We highlight the significant impact of VR in STEM Education for real life experiments, enhanced learning, visualization, and simulation-based learning. Despite promising benefits, challenges such as high costs, technological barriers, and content limitations persist. This research also categorize challenges related to students and Teachers from the literature and offers recommendations for further research to optimize its integration into diverse educational contexts.

Keywords

VR, Education, STEM, Students, Teachers, Higher Education

How to cite this paper:

Muhammad Ahsan, Ulfat Tahireen, Filza Javed, Saul Delabrida, and Daniel L. Guidoni. 2025. A review on VR in STEM Education with Students and Teachers oriented Challenges. In *Proceedings of ACM IMX Workshops, June 3 - 6, 2025.* SBC, Porto Alegre/RS, Brazil, 5 pages. https://doi.org/10.5753/imxw.2025.2491

1 Introduction

Education is a fundamental pillar of society, playing a crucial role in shaping individuals' knowledge, skills, and attitudes. Traditional educational approaches often rely solely on textbooks, lectures, and static visual aids, which can limit students' engagement and experiential learning opportunities [51]. We present the basic concepts related to Extended, Augmented and Mixed Reality (XR, AR and MR, respectively) and then reviews the applications of VR in education especially targeting STEM, categorizing them into specific domains (Subject-Wise) to provide a comprehensive understanding and to view teachers' and students' related challenges.

VR was originally developed for video gaming and entertainment [31]. VR is a cutting-edge technology that uses computer-generated

This work is licensed under a Creative Commons Attribution 4.0 International License. ACM IMX Workshops, June 3 - 6, 2025.

© 2025 Copyright held by the author(s). https://doi.org/10.5753/imxw.2025.2491 simulations to create immersive, 3D environments that interact with digital content in a way that feels incredibly realistic [15]. VR connects virtual things with real-world elements to generate interactive educational environments [36]. With everything from virtual field trips to historical landmarks to substantively realistic simulations of laboratory experiments, VR drives active learning, promotes student engagement, and enhances knowledge retention across disciplines. However, despite its immense potential, integrating VR into educational systems has some challenges including high costs, limited access, and the need for teacher training to maximize its effectiveness.

Recently, VR has captured a lot of attention in the education sector because of its ability to boost student engagement and support hands-on learning [14]. By placing learners in interactive environments, VR can recreate real-world situations that are often tough to mimic in a traditional classroom which enhances the overall educational experience [23]. The prominent advantage of the VR in education is enhancement of student engagement and motivation for a deeper understanding into STEM subjects. As technology advances and becomes more affordable, VR is likely to play an increasingly important role in shaping future educational practices, making learning more engaging and tailored to individual needs. The exciting world of VR is an aid in changing conventional educational and learning methodology into a game-changing tool. These perspectives indicate how VR can transform learning experiences by making difficult concepts more understandable and engaging for students [32].

In this research we discuss the following key points:

- The study categorizes and analyzes VR applications in *education* across various domains under *STEM* education subjects like Science, Technology, Engineering, and Mathematics that provides an extensive overview of existing literature.
- This review identifies how VR significantly increases student engagement, learning outcomes and retention through immersive, interactive learning experiences that make complex concepts more accessible.
- The research highlights challenges faced by *students and Teachers* and their opportunities to adopt VR effectively.
- The study identifies key barriers such as high costs, technological limitations, motion sikness and accessibility issues, while offering solutions and recommendations to overcome these challenges by maximizing VR's educational potential.

2 Literature Review

This section explores the impact of VR on student learning outcomes, knowledge retention, and students engagement supported by insights from relevant research papers.

In the realm of STEM education, the use of VR enables students to dive into complex scientific ideas and perform virtual experiments that might be too risky or impractical in real life [30] e.g., VR applications can mimic chemical reactions or illustrate physical phenomena, helping students grasp abstract concepts more effectively. Additionally, VR-based STEM education has been shown to boost motivation and interest among students by making learning more engaging and accessible [40]. VR improves students attention for learning in the following aspects.

2.1 Enhanced Learning Outcomes

VR significantly enhance learning outcomes in STEM education. Authors from [26] indicate that VR provides students with the ability to interact with complex concepts in a three-dimensional (3D) environment, leading to deeper understanding and better retention of information. For instance, research has demonstrated that students using VR to study human anatomy achieved higher post-test scores compared to those using traditional methods, highlighting the effectiveness of VR in complex subjects [8]. VR improves students learning outcomes by 3D conceptual design and presentation experience [25].

2.2 Improved Knowledge Retention

Knowledge retention is a critical aspect of STEM education, and VR has been found to be highly effective in this regard. This is particularly evident in subjects like engineering and biotechnology, where VR simulations have been shown to enhance students' ability to retain information and apply it in real-world scenarios [34]. VR enhances the learning experience and knowledge retention of students by providing a beneficial learning aid. To ensure, future utilization of such systems, students' perceptions were examined regarding utilizing VR as an educational tool in the Faculty of Information [4].

2.3 Increased Student Engagement

Student engagement is a key factor in determining the success of any educational intervention, and VR has been found to significantly increase engagement levels in STEM education. VR enhances group work skills and self-regulated learning [1] and self-efficacy and experience [14] among students.

VR motivates students to participate actively in the learning process, leading to higher levels of involvement and interest in the subject matter [20]. Moreover, VR offers personalized learning experiences, allowing students to explore concepts at their own pace and in a manner that suits their individual learning styles. This personalized approach has been shown to increase students' motivation and interest in STEM subjects, particularly among atrisk students who may benefit from the interactive and engaging nature of VR [16].

2.4 Impact on Problem-Solving and Critical Thinking

VR has also been found to enhance students' problem-solving abilities and critical thinking skills [4]. This is particularly evident in studies where students using VR simulations demonstrated improved problem-solving skills and a deeper understanding of scientific principles [39]. Furthermore, VR provides students with the opportunity to experiment and explore different solutions to problems in a risk-free environment, fostering a sense of creativity and innovation. This aspect of VR is particularly beneficial for STEM education, where the ability to think critically and problems solving approaches is highly valued [11].

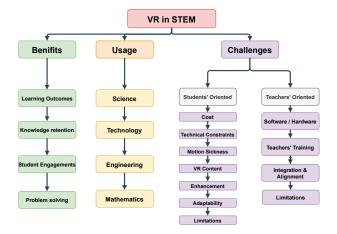


Figure 1: Constructive hierarchy of this paper

3 Methodology

To ensure relevancy in the literature, we applied the following inclusion and exclusion criteria in selecting studies.

Inclusion Criteria

- Peer-reviewed journal articles, conference papers, or systematic reviews.
- Papers that focus VR, AR, MR, or XR in STEM education.
- Studies involving primary education, K-12, higher education.
- Articles written in English Language.
- Content directly relevant to learning outcomes, usability, pedagogical impact, or implementation challenges in educational settings.

Exclusion Criteria

- Studies not related to education.
- Articles focusing solely on non-STEM disciplines unless explicitly interdisciplinary with STEM.
- Redundant publications or replications without significant new insights.
- Articles written in other than English Language
- Outdated studies focusing solely on obsolete technologies or platforms.

4 VR in STEM Domains

VR has emerged as a transformative technology in education, offering immersive and interactive learning experiences across diverse fields [12]. This review synthesizes existing research on the challenges, benefits, and impact of VR in STEM education and the hierarchy of the paper is depicted in Fig. 1.

4.1 VR in Science

In biology systems, the function such as macromolecules (proteins, RNA, and DNA) and their complexes 3D structural models, molecular graphics have been using VR for better students learning [47]. VR in physics received much more attention in terms of student perception, particularly in self-efficacy and experience, followed by satisfaction, motivation, and engagement. Authors from [41] identifies that there is significant implications for future research, particularly as a teaching tool in chemistry. With a basic smartphone and software, users may now access complicated chemical experiences through the VR, bypassing the financial, geographic, and physical limitations of actual labs and their pricey equipment[22].

4.2 VR in Technology

VR technology is now becoming cost-effective for application in many domains including Technology and is expected to become even more in the future. VR has been used in various technologies including green building landscape design environmental industry 4.0 transportation aerospace. Authors from [9] presented how technology was used to support students to become content creators in an integrated STEM learning environment. VR provides a functional approach to analyzing STEM applications in complex concepts in various technologies [29]. The laboratory environments of technologies assist students in learning with application tools based on web-based e-learning environments and mobile learning platforms[21].

4.3 VR in Engineering

The VR technology have been integrated in the engineering field. ViRILE VR-based software designed for undergraduate chemical engineers that stimulate the configuration and operation of plant Polymerization[42]. VR is used in the field of mining and civil engineering to enhance occupational health and safety practices[44]. Authors from [48] use VR in civil engineering education by emphasizing multi-perception teaching, where multiple senses (vision, hearing, and touch) enhance learning efficiency. Electrical engineering students had a highly positive attitude toward the use of the integrated AR with e-worksheet in the electrical machines course. By using this, it had a positive and significant direct effect on engineering students' attitudes.[50].

4.4 VR in Mathematics

Research from [9] made a design of the robots helped students learn and practice mathematical concepts in an integrated way, presenting students with challenges of increasing difficulty. The use of robotics helped students "connect the skills learned in mathematics. In the filed of mathematics the game based learning is mainly used for abstract concepts rather than complex ones [43]. VR math and GeoGebra provide 3D drawing space that enhances

spatial understanding among students[45]. VR and gamification can further enhance mathematical performance by making learning more engaging and fun[7].

5 Students' vs Teachers Oriented Challenges

While VR offers numerous benefits for STEM education, there are also challenges and considerations that need to be addressed. Some of the challenges drawn from the literature for Teachers and Students are mentioned below and subject-wise can be seen in Table 1. The challenges faced by students and teachers using VR are as follows:

5.1 Students' oriented challenges

- Cost: Implementing VR hardware is expensive, making it unaffordable for many institutions and individuals. Significant investment is required to transform traditional laboratories into VR labs [5].
- Technical Constraints: The need for high-quality VR equipment and the potential for cybersickness, can hinder the effective implementation of VR in educational settings [24]. There are various VR devices available, and finding the right one for each tailored learning environment remains a challenge. Studies from [37] show that popular devices such as Samsung Gear enhances student learning experiences.
- Motion Sickness: Many students experience motion sickness when using VR for extended periods because their bodies struggle to adjust to the disconnect between what they see in the virtual environment and what they physically feel. This sensory mismatch can lead to dizziness, nausea, and discomfort, making it difficult for students to focus on learning which is due to visual fatigue [5],[13].
- VR Content: The development of VR content requires careful consideration of pedagogical design to ensure that it aligns with learning objectives and is accessible to all students [46]. It is also mentioned that VR-based interactive learning should be carefully designed for different tasks using guided instructional approaches, extending beyond traditional classrooms to settings like field trips and museums [37].
- Enhancement: There is also a need to improve the usability and effectiveness of laboratory environments for students. Authors addressed this by enhancing interaction with the lab objects and facilitating remote collaboration [6].
- Adaptability: Some students are not used to VR technology, they may find it difficult to move around in the virtual world and not fully take part in lessons [28].
- Limitation:Researchers found that collaborative learning with six or seven students is easier for instructors to manage due to equipment quantitative limitations [18].

5.2 Teachers' oriented challenges

Teacher training is another critical factor in the successful integration of VR in STEM education. Educators need to be equipped with the necessary skills to effectively utilize VR tools and design immersive learning experiences that enhance student outcomes. Followings are some key insights from the literature.

ACM IMX Workshops, June 3 - 6, 2025 Ahsan et al.

Table 1: Challenges of VR in STEM Education

rtunities	Student Challenges	Teache

STEM Subject	Opportunities	Student Challenges	Teacher Challenges
Science	Virtual labs reduce costs, enable experiments, and enhance understanding and learning outcomes [37, 49].	Lack of tactile experience, motion sickness, hardware dependency [2, 49].	High simulation costs, limited research on VR learning impact [13, 33].
Technology	Immersive coding, AI model visualization, self-directed learning [2, 28].	Limited VR programming tools, complex debugging, high-performance computing needs [6].	Lack of VR curricula, integration challenges, frequent software updates [33].
Engineering	Simulates design analysis, enhances visualization, supports virtual prototyping [10, 13].	Limited physical interaction, incomplete physics simulation, group project difficulties [2].	High software costs, lack of collaboration tools for remote teamwork [28].
Mathematics	Visualizes abstract concepts, supports gamified learning [2, 27].	Preference for traditional methods, limited VR tools for advanced topics [27].	Difficulty designing VR applications, lack of teacher training [33].

- Teacher's Training: Without adequate training and support, the potential of VR to transform STEM education may not be fully realized [2]. A survey indicated that they would be willing to adopt VR if they received sufficient training
- Software/ Hardware: Teachers that are not familiar or comfortable with technology may find it more difficult to visualize how to use it for teaching [38]. Teachers must be familiar with software and Hardware to fully convert the traditoinal classroom into VR-enabled classrooms [5].
- Integration and Alignment: The teachers need to develop new instructional strategies that effectively integrate VR into the curriculum [3]. They also face difficulties finding VR content that aligns with their curriculum, as there is still a shortage of high-quality, subject-specific VR learning materials [37]. Authors highlighted the challenge of finding or creating VR experiences that align with learning objectives across subjects [35].
- Limitations: The lack of high-quality, curriculum-aligned VR content can limit the topics and activities available, reducing its effectiveness as a learning tool [19].

These challenges highlight the need for careful planning and support to effectively implement VR in educational settings.

Conclusion

This survey highlights the significant benefits of VR in education across various subjects in STEM and highlights its challenges related to students and Teachers. The incorporation of VR in STEM education has been shown to have a positive impact on students by providing immersive, interactive, and personalized learning experiences. VR enhances students' understanding of complex concepts, improves knowledge retention, and increases engagement and motivation. Additionally, VR simulations prepare students for real-world problem-solving and critical thinking, essential skills. However, successful integration of VR in education requires addressing technical

challenges, ensuring accessibility, and providing adequate teacher training and familiarity with software and hardware. VR technology continues to evolve, its potential to transform STEM education is immense, offering new opportunities for students to engage with complex concepts in innovative and effective ways. The proper use of software/hardware and instructional strategies may open various directions in the future research with in VR based educational settings.

Acknowledgments

The authors would like to thank the Foundation for Research Support of the State of Minas Gerais (FAPEMIG) - Funding Codes APQ-03665-22 and APQ-01649-23; the Federal University of Ouro Preto (UFOP); the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES) - Funding Code 001; and the National Council for Scientific and Technological Development (CNPq) - Funding Code 306101/2021-1.

References

- [1] Junaidi Abdullah, Wan Noorshahida Mohd-Isa, and Mohd Ali Samsudin. 2019. Virtual reality to improve group work skill and self-directed learning in problembased learning narratives. Virtual Reality 23, 4 (2019), 461-471.
- Pedro Acevedo, Alejandra J Magana, Bedrich Benes, and Christos Mousas. 2024. A systematic review of immersive virtual reality in STEM education: Advantages and disadvantages on learning and user experience. IEEE Access (2024).
- Murat Akçayır and Gökçe Akçayır. 2017. Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational research review 20 (2017), 1-11.
- Salsabeel FM Alfalah. 2018. Perceptions toward adopting virtual reality as a teaching aid in information technology. Education and Information Technologies 23, 6 (2018), 2633-2653.
- [5] Ahmed Jamah Alnagrat Alnagrat, Rizalafande Che Ismail, and Syed Zulkarnain Syed Idrus. 2022. The Opportunities and challenges in virtual reality for virtual laboratories. Innovative Teaching and Learning Journal 6, 2 (2022), 73-89.
- Saleh Alsaleh, Aleksei Tepljakov, Ahmet Köse, Juri Belikov, and Eduard Petlenkov. 2022. ReImagine lab: Bridging the gap between hands-on, virtual and remote control engineering laboratories using digital twins and extended reality. Ieee Access 10 (2022), 89924-89943.
- Aqeel Alzoubi and Khaled Ahmed. 2024. The Effect of Virtual Reality Technology in Teaching Mathematics on Students' Ability to Process Data and Graphic Representation. International Journal of Interactive Mobile Technologies 18, 8

- [8] Fernando Elemar Vicente dos Anjos, Adriano de Oliveira Martins, Gislene Salim Rodrigues, Miguel Afonso Sellitto, and Debora Oliveira da Silva. 2024. Boosting Engineering Education with Virtual Reality: An Experiment to Enhance Student Knowledge Retention. Applied System Innovation 7, 3 (2024), 50.
- [9] Gerald Ardito, Pauline Mosley, and Lauren Scollins. 2014. We, robot: Using robotics to promote collaborative and mathematics learning in a middle school classroom. Middle Grades Research Journal 9, 3 (2014).
- [10] Youssef Asham, Mohamed H Bakr, and Ali Emadi. 2023. Applications of augmented and virtual reality in electrical engineering education: A review. IEEE Access 11 (2023), 134717–134738.
- [11] Peter Beatrice, Annalisa Grimaldi, Stefano Bonometti, Enrico Caruso, Marcella Bracale, and Antonio Montagnoli. 2024. Adding immersive virtual reality laboratory simulations to traditional teaching methods enhances biotechnology learning outcomes. In Frontiers in Education, Vol. 9. Frontiers Media SA, 1354526.
- [12] Dennis Beck. 2019. Augmented and virtual reality in education: Immersive learning research. Journal of Educational Computing Research 57, 7 (2019), 1619– 1625.
- [13] Thomas Bohné, Ina Heine, Özgür Gürerk, Christoph Rieger, Lukas Kemmer, and Lydia Y Cao. 2021. Perception engineering learning with virtual reality. IEEE Transactions on Learning Technologies 14, 4 (2021), 500–514.
- [14] Agus Setyo Budi, Dadan Sumardani, Dewi Muliyati, Fauzi Bakri, Po-Sheng Chiu, Mutoharoh Mutoharoh, and Marlinda Siahaan. 2021. Virtual reality technology in physics learning: Possibility, trend, and tools. Jurnal Penelitian & Pengembangan Pendidikan Fisika 7, 1 (2021), 23–34.
- [15] Grigore C Burdea and Philippe Coiffet. 2003. Virtual reality technology. John Wiley & Sons.
- [16] Shenglin Cao, Juan Chu, ZuoChen Zhang, and Liyan Liu. 2024. The effectiveness of VR environment on primary and secondary school students' learning performance in science courses. *Interactive Learning Environments* 32, 10 (2024), 7321–7337
- [17] Rob E Carpenter, Rochell McWhorter, and Katherine Stone. 2023. Adopting Virtual Reality for Education: Exploring Teachers' Perspectives on Readiness, Opportunities, and Challenges. (2023).
- [18] Jyun-Chen Chen, Yun Huang, Kuen-Yi Lin, Yu-Shan Chang, Hung-Chang Lin, Chien-Yu Lin, and Hsien-Sheng Hsiao. 2020. Developing a hands-on activity using virtual reality to help students learn by doing. Journal of Computer Assisted Learning 36, 1 (2020), 46–60.
- [19] Matt Cook, Zack Lischer-Katz, Nathan Hall, Juliet Hardesty, Jennifer Johnson, Robert McDonald, and Tara Carlisle. 2019. Challenges and strategies for educational virtual reality: Results of an expert-led forum on 3D/VR technologies across academic institutions. *Information Technology and Libraries* 38, 4 (2019), 25-48.
- [20] Sanusi Sani Danmali, Samuel Adebisi Onansanya, Falade Ayotunde Atanda, and Ahmad Abdullahi. 2024. Application of Virtual Reality in STEM Education for Enhancing Immersive Learning and Performance of At-Risk Secondary School Students. International Journal of Research and Innovation in Social Science 8, 3s (2024), 3971–3984.
- [21] OECD Innovating Education. 2016. Educating for Innovation: The Power of Digital Technologies and Skills. Education Innovation and Research (2016).
- [22] Alba Fombona-Pascual, Javier Fombona, and Esteban Vázquez-Cano. 2022. VR in chemistry, a review of scientific research on advanced atomic/molecular visualization. Chemistry Education Research and Practice 23, 2 (2022), 300–312.
- [23] Laura Freina and Michela Ott. 2015. A literature review on immersive virtual reality in education: state of the art and perspectives. In The international scientific conference elearning and software for education, Vol. 1. 10–1007.
- [24] Ayah Hamad and Bochen Jia. 2022. How virtual reality technology has changed our lives: an overview of the current and potential applications and limitations. International journal of environmental research and public health 19, 18 (2022), 11278.
- [25] Hsinfu Huang and Chang-Franw Lee. 2022. Factors affecting usability of 3D model learning in a virtual reality environment. *Interactive Learning Environments* 30, 5 (2022), 848–861.
- [26] Saira Jawed, Muhammad Sarwar Zia, Toqeer Ahmed Iqbal, Saadia Muzafar, and Shazia Imran. 2024. Impact of 3D virtual reality on teaching and learning human anatomy among undergraduate students. Annals of PIMS-Shaheed Zulfiqar Ali Bhutto Medical University 20, 3 (2024), 222–226.
- [27] Joel Weijia Lai and Kang Hao Cheong. 2022. Adoption of virtual and augmented reality for mathematics education: A scoping review. IEEE Access 10 (2022), 13693–13703.
- [28] Teemu H Laine and Woohyun Lee. 2023. Collaborative virtual reality in higher education: Students' perceptions on presence, challenges, affordances, and potential. IEEE Transactions on Learning Technologies 17 (2023), 280–293.
- [29] Opeyeolu Timothy Laseinde and Damilola Dada. 2024. Enhancing teaching and learning in STEM Labs: The development of an android-based virtual reality platform. Materials Today: Proceedings 105 (2024), 240–246.
- [30] Guido Makransky and Gustav B Petersen. 2021. The cognitive affective model of immersive learning (CAMIL): A theoretical research-based model of learning in immersive virtual reality. Educational psychology review 33, 3 (2021), 937–958.

- [31] Tomasz Mazuryk and Michael Gervautz. 1996. History, applications, technology and future. Virtual Reality 72, 4 (1996), 486–497.
- [32] Alex Mazzuco, Aliane Loureiro Krassmann, Eliseo Reategui, and Raquel Salcedo Gomes. 2022. A systematic review of augmented reality in chemistry education. Review of Education 10, 1 (2022), e3325.
- [33] Jiri Motejlek and Esat Alpay. 2021. Taxonomy of virtual and augmented reality applications in education. IEEE transactions on learning technologies 14, 3 (2021), 415–429.
- [34] Artwell Regis Muzata, Ghanshyam Singh, Mikhail Sergeevich Stepanov, and Innocent Musonda. 2024. Immersive learning: A systematic literature review on transforming engineering education through virtual reality. In Virtual Worlds, Vol. 3. MDPI, 480–505.
- [35] Stylianos Mystakidis and Athanasios Christopoulos. 2022. Teacher perceptions on virtual reality escape rooms for stem education. *Information* 13, 3 (2022), 136.
- [36] Lillian Nave, Joanne Ricevuto, and Laura McLaughlin. [n. d.]. Engaging Virtual Environments: Creative Ideas and Online Tools to Promote Student Interaction, Participation, and Active Learning. ([n. d.]).
- [37] Nikolaos Pellas, Andreas Dengel, and Athanasios Christopoulos. 2020. A scoping review of immersive virtual reality in STEM education. *IEEE Transactions on Learning Technologies* 13, 4 (2020), 748–761.
- [38] Dominik Petko, Doreen Prasse, and Andrea Cantieni. 2018. The interplay of school readiness and teacher readiness for educational technology integration: A structural equation model. Computers in the Schools 35, 1 (2018), 1–18.
- [39] Saiful Prayogi and Ni Nyoman Sri Putu Verawati. 2024. Physics learning technology for sustainable development goals (sdgs): a literature study. *International Journal of Ethnoscience and Technology in Education* 1, 2 (2024), 155–191.
- [40] Jaziar Radianti, Tim A Majchrzak, Jennifer Fromm, and Isabell Wohlgenannt. 2020. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computers & education 147 (2020), 103778.
- [41] Indah Sari, Parlindungan Sinaga, Hernani Hernani, Ahmad Mudzakir, and Anas Santria. 2023. Using virtual reality as learning tools on chemistry: Advantages and challenges. Tadris: Jurnal Keguruan dan Ilmu Tarbiyah 8, 1 (2023), 49–60.
- [42] Damian Schofield. 2012. Mass effect: A chemical engineering education application of virtual reality simulator technology. Journal of Online Learning and Teaching 8, 1 (2012), 63.
- [43] Aili Shi, Yamin Wang, and Nan Ding. 2022. The effect of game-based immersive virtual reality learning environment on learning outcomes: designing an intrinsic integrated educational game for pre-class learning. *Interactive Learning Environments* 30, 4 (2022), 721–734.
- [44] Paweł Strzałkowski, Paweł Bęś, Mariusz Szóstak, and Mateusz Napiórkowski. 2024. Application of virtual reality (vr) technology in mining and civil engineering. Sustainability 16, 6 (2024), 2239.
- [45] Yu-Sheng Su, Hung-Wei Cheng, and Chin-Feng Lai. 2022. Study of virtual reality immersive technology enhanced mathematics geometry learning. Frontiers in Psychology 13 (2022), 760418.
- [46] Talia Tene, Jessica Alexandra Marcatoma Tixi, María de Lourdes Palacios Robalino, María José Mendoza Salazar, Cristian Vacacela Gomez, and Stefano Bellucci. 2024. Integrating immersive technologies with STEM education: a systematic review. In Frontiers in Education, Vol. 9. Frontiers Media SA, 1410163.
- [47] Berk Turhan and Zeynep H Gümüş. 2022. A brave new world: virtual reality and augmented reality in systems biology. Frontiers in bioinformatics 2 (2022), 873478.
- [48] Chen Wang, Yutong Tang, Mukhtar A Kassem, Heng Li, and Bingqing Hua. 2022. Application of VR technology in civil engineering education. Computer Applications in Engineering Education 30, 2 (2022), 335–348.
- 49] Tao Xie, Yan Li, and Ying Tang. 2023. Effects of using immersive virtual reality for science education on learning outcomes: A randomized controlled pilot study. IEEE Transactions on Learning Technologies 16, 6 (2023), 1045–1056.
- [50] Putra Yanto, Doni Tri, Jelpapo Putra Yanto, Rozalita Kurani, et al. 2024. Engineering Students' Acceptance of Augmented Reality Technology Integrated with E-Worksheet in The Laboratory Learning. International Journal of Online & Biomedical Engineering 20, 3 (2024).
- [51] Asif Zaman, Mushfiqur Rahman Abir, and Sawon Mursalin. 2024. Extended reality in education and training: Enhancing trustworthiness. Int. J. Sci. Res. Arch 11 (2024), 1705–1720.