
Towards a Grounded Theory for a Development Process Model
for Machine Learning Based Systems

André Meireles∗
andre@crateus.ufc.br

Universidade Federal do
Ceará
Brazil

Rainara M. Carvalho
rainara@ufc.br

Universidade Federal do
Ceará
Brazil

Thiago Rique
thiago.rique@virtus.ufcg.edu.br
Universidade Federal de

Campina Grande
Brazil

Maryzangela B. P.
Cavalcante

maryzangelabessa@alu.ufc.br
Universidade Federal do

Ceará
Brazil

Mirko Perkusich
mirko@virtus.ufcg.edu.br
Universidade Federal de

Campina Grande
Brazil

Hyggo Almeida
hyggo@virtus.ufcg.edu.br
Universidade Federal de

Campina Grande
Brazil

Angelo Perkusich
perkusich@virtus.ufcg.edu.br
Universidade Federal de

Campina Grande
Brazil

ABSTRACT
The software industry has experienced the integration of artificial
intelligence capabilities into applications, facing new challenges
regarding software development. Despite research and industry con-
tributions providing lessons learned and best practices, no study pro-
posed a reference process for developing this type of software, and
practitioners still struggle to establish a working process. Through
a Grounded Theory study involving practitioners with experience
in machine learning (ML) projects, this paper presents an emerg-
ing theory of how ML-based systems are developed. The reported
results comprise key elements of a reference development process
with its respective phases and activities.

CCS CONCEPTS
• Software and its engineering→ Software development pro-
cess management; • Computing methodologies → Machine
learning.

KEYWORDS
Machine Learning Systems, Software Development Process, Soft-
ware Engineering, Intelligent Software Engineering
ACM Reference Format:
André Meireles, Rainara M. Carvalho, Thiago Rique, Maryzangela B. P.
Cavalcante, Mirko Perkusich, Hyggo Almeida, and Angelo Perkusich. 2021.
Towards a Grounded Theory for a Development Process Model for Machine
Learning Based Systems. In Proceedings of Brazilian Workshop on Intelligent
Software Engineering, September 27 and 28, 2021, Online Event (ISE’ 21). ACM,
New York, NY, USA, 6 pages. https://doi.org/10.5753/ise.2021.17278

1 INTRODUCTION
Software teams seek to stay up to datewith development approaches
and application domains, as the software industry experiences dif-
ferent trends. Advances in machine learning (ML) has leveraged
the integration of artificial intelligence (AI) into software systems,
which brings with it a set of new challenges and issues.

Different aspects which are not commonly found when develop-
ing traditional software should be considered in the development
of ML-based systems. In addition, integrating AI capabilities im-
pacts the processes companies use to deliver their products and
services. The software engineering community has made efforts to
deal with the particularities brought by this trend, identifying and

ISE’ 21,
2021. https://doi.org/10.5753/ise.2021.17278

discussing issues and challenges, and providing lessons learned and
best practices [1, 3, 6].

Despite the community’s contributions, developers still face dif-
ficulty in establishing a repeatable process [3]. This is where a
research gap arises regarding the need for a reference development
process for ML-based applications. So, the authors of this paper
performed a Grounded Theory study guided by the following re-
search question: "How do practitioners develop ML-based systems
and how to integrate the activities, roles, and underlying aspects
into a development process?" Based on interview transcripts of 6
participants, this study presents an emerging theory of a develop-
ment process for machine learning projects. The authors report the
phases, activities, and related aspects identified during the analysis,
providing additional information on future steps to the develop-
ment of the whole theory.

2 BACKGROUND
2.1 The need for evolving SE processes
As the dynamics of application domains change in the software
industry, teams in different companies have adapted and evolved
the processes used to develop software. That was how it happened
when plan-driven approaches for software development proved to
be inappropriate to respond to customers’ changing requirements.
Agile methods took place in the software engineering landscape,
bringing a change-driven set of practices that help deliver valuable
software faster to the customer.

With the dissemination of AI, different types of applications
have been developed (e.g., integrating ML components). In this
context, practitioners face new challenges and have to cope with the
particularities of this type of software. To integrate ML features into
the phases and activities of a development process, workflows have
been proposed, having as a key characteristic their data-centered
nature and feedback from one stage to another [1].

2.2 Software Engineering for Artificial
Intelligence

Software engineering has been supported by tools with diverse pur-
poses such as software versioning and project management. These
tools generate a large amount of data that can be used to get insights
on the different issues related to software development. As a result,
an emergent area has gained interest in recent years: intelligent
software engineering (ISE). In the context of their study, Perkusich
et al. [5] define ISE as the application of intelligent techniques to
tackle software engineering problems. By intelligent technique, the

https://doi.org/10.5753/ise.2021.17278
https://doi.org/10.5753/ise.2021.17278

ISE’ 21, André Meireles, Rainara M. Carvalho, Thiago Rique, Maryzangela B. P. Cavalcante, Mirko Perkusich, Hyggo Almeida, and Angelo Perkusich

authors mean not only AI-based solutions but any technique that
explores data with the purpose of knowledge discovery, reasoning,
supporting decision-making, among others.

Besides considering the perspective addressed by Perkusich et al.,
Xie defines ISE under a different aspect of denotation (which is used
throughout this paper): the development of software engineering
solutions for intelligent software.With the increasing dissemination
and popularity of AI, many efforts have been made to improve the
productivity of intelligent software development, as well as the
dependability of intelligent software [11].

Software processes have been integrated with AI workflows,
providing insights about challenges and issues related to the de-
velopment of AI infrastructure and applications. That is what the
work of Amershi et al. [1] is about. The authors provide lessons
learned from the experiences of software teams building AI-based
applications and point out three fundamental aspects regarding the
development of intelligent software: i) data discovery, management
and versioning is inherently more complex than the same activities
in other application domains; ii) skills different from the ones in
typical software teams are required to develop models. That means
that only software engineering skills are not enough: a consistent
knowledge of machine learning foundations is necessary; iii) han-
dling AI components as distinct modules does not work the same
way as with other software components. Models can affect one
another due to their inherent complexity [1].

So, several aspects should be considered to adapt and evolve
software processes to meet the needs of developing AI-based ap-
plications. Many times these aspects are not well understood, not
even clearly stated, and practitioners still struggle to operationalize
processes to support machine learning workflows [3], which rein-
forces the need for a reference development process for intelligent
software.

3 METHOD
Grounded Theory is a research method that supports theory build-
ing from empirical data in a systematic way that includes analyzing
data through coding and categorizing, supported by a process of
constant comparison [10]. The choice of Grounded Theory is justi-
fied by the interest of the researchers towards generating a theory
for a reference development process for AI applications. Rather
than validating any theory from the literature on the topic, the
authors of this paper aimed at uncovering aspects for the devel-
opment of intelligent software from empirical data, focusing on
understanding the activities, the roles, how they are related and
underlying factors and conditions.

The Grounded Theory method is composed of the following
phases: planning, data collection, coding, and reporting results. The
planning, collecting and coding are described in the next subsec-
tions. Results are reported in Section 4.

3.1 Planning
The planning phase aims to identify the area of interest and the
research question that will drive the work. In this work, the area
of interest is Software Engineering for Machine Learning, and the
research question is: “How do practitioners develop ML-based sys-
tems and how to integrate the activities, roles, and underlying
aspects into a development process?”.

As mentioned in previous sections, practitioners still struggle to
establish working processes in which ML workflows take place. So
the authors planned to build a theory from empirical data regarding
the experience of practitioners involved in the development of ML-
based systems. To obtain a picture of the participants’ perspective

on the topic, interviews were designed and conducted, contain-
ing in-depth questions about several aspects related to intelligent
software development, and the researchers had the opportunity to
follow-up on the topic with the interviewees [10].

This work adopts the Straussian grounded theory since its posi-
tion is aligned with the aim of the authors regarding aspects such
as the research question and the role of the literature [8], and it
also provides clear guidelines to researchers.

3.2 Data Collecting
To collect data about how engineers develop systems with machine
learning, we interviewed 6 developers. We selected them by the
convenience sampling technique [4]. The criteria to select them
were:

• The interviewee should be a member of a machine learning
development team

• The interviewee should have more than three years of expe-
rience with machine learning projects

Moreover, the authors selected the samples in order to guarantee
different contexts of ML projects execution (academy and industry,
different ML areas, different business domains) to reduce data bias.
Table 1 presents the samples attributes details.

As soon as the first data became available, data analysis started,
feeding a simultaneous process of collecting and analyzing data.
The interviews were designed and executed as intensive interview
that permits an in-depth exploration of particular topics [2] that
the interviewer consider more relevant. The interview questions
are accessible online1.

Context Qualitif. Exp.
Time

ML Area Business Do-
main

1 Academy Master 7 years Time series,
Prediction

Market Prod-
uct Demand
Prediction

2 Academy PhD 6 Years Time series,
Prediction

Hardware
components
fails

3 Industry PhD 4 years Computing Vi-
sion

Document
Classification

4 Industry Technic 4 years Recomendation
Systems

E-commerce
retail

5 Industry PhD 7 years Computing Vi-
sion

Agro Industry

6 Industry PhD 4 years Classification
and Prediction

Hardware
components
analysis

Table 1: Data Collecting - Samples details

3.3 Coding
Coding means extracting concepts from raw data and relating them
to each other until reaching a core concept [9]. In the case of this
study, the idea is to extract and relate concepts that characterize
how engineers develop machine learning applications.

The coding process is performed in three tasks: open, axial and
selective coding. Each one of them is better explained by showing
what it means and its outcomes.

1Interview Script: https://drive.google.com/file/d/1VuDcdq7otVuSmHQgS42izroicXgavM53

Towards a Grounded Theory for a Development Process Model for Machine Learning Based Systems ISE’ 21,

3.4 Open Coding
In this task, the researcher inspects the data to understand the
essence of what is being expressed. In the case of this research, the
authors inspected the data extracted from the interviews. Then,
the researcher (first author) created a conceptual name (code) to
represent his understanding. Codes can represent a single word, a
phrase or a whole paragraph. The MAXQDA12 tool was used to
support open coding.

Figure 1 (A) illustrates the application of the open coding proce-
dure using some examples. As presented, ‘eda – exploratory data
analysis’, ‘data visualization’, ‘intelligence modelling’ and ‘intelli-
gence integration’ emerged as codes from the interview transcripts.
By applying a constant comparison process (a key component of
the Grounded Theory method [8]), these codes and codes from
other interview transcripts were integrated into a higher level of
abstraction, categories. In a particular case, the codes ‘eda – ex-
ploratory data analysis’ and ‘data visualization’ were grouped into
the category ‘feasibility analysis’.

3.5 Axial Coding
Axial coding is the process of relating concepts, or grouping them
by creating categories (a high-level concept that represents a group
of codes) [9]. These relations between concepts can be defined by
the researcher, although there are already existing relations that
can be reused, such as “is a”, where a concept is a kind of another
concept.

To illustrate an example of axial coding, Figure 1 (B) shows how
the subcategories ‘intelligence development’ and ‘service develop-
ment’ relate to each other, since they represent similar concepts
(with particular characteristics) into the phenomenon under study.
Given these subcategories, a category called ‘development’ was
created to group them, establishing a relationship that emerged
from the analysis.

3.6 Selective Coding
Finally, when all codes and categories can be related to a core
category, it means the researcher is doing the selective coding. As
Figure 1 (C) indicates, the authors related the subcategories and
categories derived from the open and axial coding to identify the
core category. In selective coding, the emerging theory started
to take shape as the subcategories and categories captured a part
of the whole process. The core category represents the central
phenomenon and, in the case of this study, builds the theory of a
development process for intelligent software.

2

4 RESULTS
This study’s execution involved, until here, 8 hours and 33 minutes
of interviews from which 312 codes and categories were generated.
These codes were mapped by one researcher and reviewed by two
other researchers.

The emerging theory until then is "Development Process for
Machine Learning Projects". The following sections present details
about the theory formulation based on the data collection and
analysis.

4.1 Emerging Theory: Development Process for
Machine Learning Projects

The authors observed that ML projects life cycle works quite sim-
ilarly to traditional softwares, where almost all the activities (re-
quirement elicitation, analysis design, implementation, tests, de-
ployment and monitoring) are performed on each project’s phase,

but the effort applied for each activity depends on the project’s
phase. This same scheme, with small differences, can be found in
the Unified Process Model and Rapid Application Development [7].

In this emerging theory, a ML project is composed by three
phases: Feasibility Analysis, Development and Operation. Although
the proposed phases look similar or can be mapped to the phases
defined by other classic software development models, such as
Inception, Elaboration, Construction, Transition and Production, from
Unified Process Model [7], the key findings of this work are related to
new identified activities, the effort applied to each activity for each
phase, and the criticality and duration of each phase. The reasons
why the authors concluded that are detailed in the next sections.

It is important to highlight that this emerging theory does not
only intend to represent how ML projects are executed but also to
reduce the issues and risks identified by the interviewees’ declara-
tions.

4.2 Phase 1 - Feasibility Analysis
ML projects are often started from a problem that someone believes
can be solved by using machine learning or other data science tech-
niques. The problem is that, different from traditional software,
the client does not comprehend a ML solution enough. The inter-
views showed that this problem happens even in big companies
with a large experience with ML solutions. See in Table 2, reports
from 3 different interviewees that were coded as "client’s high or
unreachable expectation".

#4 "Often, in the case of the company, there is a definition from the
marketing team, they want something and that this problem could be
solved by using machine learning or data science in general. But there
is still not much maturity and the definitions are quite open, causing
some difficulties"
#1 "Because, when working with machine learning, the client is very
anxious, he wants to see the result right away, even if it’s right at the
beginning, for example, if it’s a prediction problem, he already wants it
to be working 95% well"
#2 "They [clients] have an expectation that ML will solve all the prob-
lems, that it’s like a silver bullet that will deliver everything they expect"
Table 2: Text Segments related to Client’s Expectations

Due to that, some interviewees reported that their ML teams,
based on the lessons learned, defined a feasibility analysis phase
in order to solve or reduce problems related to the following risk
points that commonly occur in ML projects:

• Make the client problem clear;
• Authorization to access the needed data;
• Verify the available data quality;
• Identify existing techniques to solve the problem;
• Identify needed improvements to have suitable data to work;
• Client expectation alignment.

Such points, in this theory, are verified by the execution of a set
of activities that were coded and related to the Feasibility Analysis
category, as presented in Figure 2. The codes and their respective
text segments that grounded the definition of these activities and
the existence and importance of the feasibility analysis phase can
be accessed on the online sheet of codes2. The same approach3 was
applied for all the next concepts presented hereafter. The online
sheets show only part of the samples of text segments coded during
this work.
2https://drive.google.com/file/d/1upVutG6AvOadcClv12L5qhsWziH80D8Q
3https://drive.google.com/file/d/1zqQZ9VAsHddMjEXHd1yd3OWLFqztX853

ISE’ 21, André Meireles, Rainara M. Carvalho, Thiago Rique, Maryzangela B. P. Cavalcante, Mirko Perkusich, Hyggo Almeida, and Angelo Perkusich

Figure 1: Application of Strauss-Corbinian Grounded Theory procedures

Figure 2: Feasibility Analysis - Subcategories and Codes

As the most of the development process models, the proposed
phases and activities may be adapted and used or not according to
the project needs. The main point is that ML projects are often so
much riskier and, for that reason, the feasibility analysis should take
more time and attention than most traditional software projects.

4.3 Phase 2 - Development
As soon as the project feasibility risk is reduced and the project is
considered feasible, the Development Phase starts. This phase is
composed of three branches: Data Pipeline Development, Intelligence
Development, and Service Development, organized according to the
technical skills needed to perform the activities that compose each
branch.

Figure 3 represents the Development Phase branches and activi-
ties. Although many activities can be executed parallelly, the arrow
from Data Provisioning to Intelligence Development represents that
the provisioning of new data should trigger some Intelligence Devel-
opment activities such as (but not only) model training and model
test. The other arrows represent that for new models generated
by the Intelligence Development, when requested, they should be
validated by the QA and, if approved, integrated into the service.

Before service deployment, the service with the new integrated
model should also be validated by the QA.

Figure 3: ML Developement Process - Development Phase

This scheme of branches was designed to be parallelly executed
and with low coupling. Among them, some activities can generate
inputs that will necessarily trigger the execution of activity of an-
other branch. However, each branch has an internal cyclic behavior,
independent of the other phases, as an iterative and incremental
process. For instance, in the Intelligence Development branch, it is
possible to run the Intelligence Modeling, Model Training and Model

Towards a Grounded Theory for a Development Process Model for Machine Learning Based Systems ISE’ 21,

Test using the same data set version. The next paragraphs detail
each branch and its respective activities.

Data Pipeline Development branch consists of all the activi-
ties related to collect andmanage data, and finally set them available
if they meet the expected quality for ML solution modeling and
models training. It is commonly called pipeline because the se-
quence of tasks performed from the first access to the raw data until
achieving the ideal data format and composition, is often modeled
as a Directed Acyclic Graph (DAG) in which the next task processes
the data resulting from a preceding task processing.

According to the reports, the most important concepts involved
in the data pipeline are:

• Data Collection: Access the needed raw data to be pro-
cessed by the data pipeline.

• Data Transformation: Apply changes on data in order to
obtain new data with specific formats and characteristics
(e.g.: Data Augmentation by applying filters on images, Syn-
thetic Data Generation based on existing data).

• Data Labeling: For supervised learning approaches, in spe-
cial, labeled data are essential for models construction. Data
labeling can be performed by humans or using automatic
techniques (e.g.: Active Learning). In some cases, the col-
lected data comes labeled, anyway, improvements can be
necessary.

• Data Versioning: Rigid control of the dataset versions that
allow retrieving the data as they were in a specific point
of time. Depending on the size of the datasets, it is highly
recommended a careful definition of tools and control points
in order to reduce the storage consumption.

• Data Provisioning: Consists in control of datasets regard-
ing collecting method, integration to organizational pro-
cesses, and accessibility. Commonly some quality criteria
such as data quality, reliability, integrity, security, availabil-
ity, accessibility, recoverability are defined and, based on
that, datasets can be classified at different levels (e.g. Bronze,
Silver, and Gold is a common convention for this classifica-
tion)

The presented activities should be analyzed and used to base
the design of the data pipeline. Ideally, the data to be provided
to Intelligence Development activities should have the expected
quality, should be versioned, and a clear mechanism to access the
data ready to use should be defined.

Intelligence Development is the branch of the ML develop-
ment process that embraces the production, management, and pro-
visioning of ML models. It has a high dependency on data that
should be provided by the data pipeline. When a minimum data
management policy is not defined with, at least, a data version con-
trol system, critical issues such as feasibility to reproduce training
can occur. The following activities were identified by the reports of
the interviewees:

• Data Pre-processing: Embraces data manipulation that re-
sults in data changes, but that can not be done by the data
pipeline for any reason. Commonly, the data that will be
processed by the resulting model in production needs to be
modified before being processed by the model (e.g.: feature
extraction).

• Intelligence Modelling: Defines all the aspects related to
the intelligent model construction, involving the definition
of the most suitable approaches and techniques to solve
the problem, the needed data, features selection, and other
needed parameters based on the project’s requirements (e.g.:
problem type, expected accuracy, inference time)

• Model Training: Consists on the implementation of a pro-
cedure (using programming language or automatic tools)
following the specifications defined by the intelligence mod-
eling. Using the provisioned data, the developer trains ML
models using specific techniques and follows the best param-
eter for that context. As soon as you realize that changes in
the training procedure are not needed to retrain the model,
this activity is often automated without human interven-
tions.

• Model Test: Commonly executed together or immediately
after each training, this activity in this phase consists in ver-
ifying models improvements based on the generated metrics.
When the tests indicate that a better model was achieved,
the generated model should be versioned and provisioned
for a quality assurance (QA) process.

• Configuration management: A horizontal discipline re-
lated to control of environments and dependencies. It de-
serves a great relevance for intelligence development in order
to guarantee the reproducibility of the model generation. For
most cases, it is extremely important to guarantee that all the
artifacts, parameters, and dependencies necessary to rebuild
the model are versioned and related to the model version.

Organizing these activities sequentially by the level of depen-
dency among them, the intelligence modeling and the configuration
management policy should be defined initially. Once there are data
to perform training, it is possible to train and test models. When a
model is considered ready, it should be versioned and, in an ideal
scenario, sent to the quality assurance process for validation.

Quality Assurance (QA) for ML projects was reported as a quite
immature area by the interviewees. For most of them, although
they had reported it as a necessary and important process, it is no
formally defined or executed in their contexts. For that reason, this
emerging theory does not establish yet the concepts and practices
that compose such area. Considering the role of the QA on tradi-
tional software development, it should determine if a model is ready
or not for deployment in a specific environment (e.g. stagging or
production, alpha, beta, or release to market). Being approved by
the QA process, the model is ready to be deployed. However, it is
often embedded into a service that is managed in the context of the
Service Development branch.

Service Development branch works very similarly to tradi-
tional software because it is a common software that receives input
data, uses the ML model to analyze those input data, and produces
an output based on the output produced by the model. In this con-
text, there is a large variety of data types (e.g. text, audio, video),
protocols (e.g. HTTP for Rest Services, RTMP for video streaming),
and architectures (e.g. synchronous request, event-based system,
batch processing) that can be used depending on the solution ob-
jective.

The identified activities of this branch presented below, as well
as the previous ones, are independent of the technical aspects of
the project:

• Service Design: Defines all the aspects related to the intelli-
gent service, involving the definition of components commu-
nication, technologies to be used, communication protocols,
and user interface based on the project’s requirements re-
lated to how the intelligence should be provided and how to
embed and use the intelligent model.

• Service Implementation: It is the construction of the ser-
vice by the implementation of the specifications defined by
the service design.

ISE’ 21, André Meireles, Rainara M. Carvalho, Thiago Rique, Maryzangela B. P. Cavalcante, Mirko Perkusich, Hyggo Almeida, and Angelo Perkusich

• Intelligence Integration: An intelligent service should be
prepared to load intelligent models with low effort. For every
new approved model, it is necessary to integrate the model
into the service and provide the service now using the new
model;

• Service Test: Service tests are traditional software tests cre-
ated and executed during the development such as unit tests
and integration tests. These tests should focus on ensuring
the correct functioning of the service, excluding aspects re-
lated to the ML model (that should be guaranteed by the
intelligence tests and validation);

• Service Build: Also quite similar to traditional software
build that consists in generating one or more artifacts ready
to run on a target environment (e.g. compile a C code and
generate an executable file for Linux). In this case, it is pos-
sible that a new build is necessary for every new model or
that a new build is only necessary if the service itself has
changed.

5 CONCLUSION
Developing software that integrates AI capabilities requires a pro-
cess which includes a set of activities, issues and aspects not com-
monly found in traditional software development. Based on the
analysis of empirical data regarding the experiences of practition-
ers involved in machine learning projects, the emerging theory
presented in this paper comprises a set of key elements organized
in 3 phases with their corresponding activities.

Themost important findings of this study so far are (1) , due to the
high risk inherent to ML projects, there is a strong indicative that
the project’s conception phase is more complex and the feasibility
risk is higher than in tradicional software projects because of the
many contextual problems like the high customer expectation and
the needed datasets, (2) the traditional quality assurance practices
are not suitable for ML projects and there is a lack of maturity
comparing to the same area in traditional software projects, and (3)
the understanding that the development process for ML projects
can not be modeled as a unique cycle of activities that are executed
by the single team.

The development process presented in this paper intends to
solve those problems by the definition of Feasibility Analysis phase,
which is an intense conception phase composed by a set of activi-
ties that approaches the most common problems and risks of ML
Projects, and a Development Phase composed by separated develop-
ment branches that aggregate activitivies with high dependency
and allow independent iterative activity cycles for each branch.

This paper summarizes the results of the study considered ma-
ture enough to be published. The authors’ decision about which
elements of the emerging theory would be reported relied on the
level of details shared by the participants. One of the phases iden-
tified in the study (the operation phase) was not approached be-
cause additional data need to be collected and analyzed to enable
a complete understanding of this aspect regarding how ML-based
applications are developed.

With regard to limitations and threats to validity, the coding
procedures were executed by the first author and revised by two
other researchers to prevent bias. The limited number of interviews
also influences the results. The next paragraph better explains what
this means for theory developing and points out future actions to
mitigate this limitation.

As Grounded Theory guidelines determine, data collection and
analysis are performed simultaneously until theoretical saturation
is reached, meaning that no new concepts or insights emerged,
which indicates that the researcher can stop collecting data. So, as

future steps, new interviews should be conducted to enable the
rise of new insights on the theory until theoretical saturation is
reached. Also, a more in-depth discussion of the findings in light of
the literature on the topic is required.

Finally, the contribution of this study becomes relevant as a the-
ory starts to take shape from empirical data analyzed in a systematic
way that makes it possible to understand the peculiarities of how
intelligent software is developed. Despite the efforts made by the
software engineering community, no study proposed a reference
development process for ML-based applications.

REFERENCES
[1] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece

Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. 2019.
Software engineering for machine learning: A case study. In 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 291–300.

[2] Kathy Charmaz. 2006. Constructing grounded theory: A practical guide through
qualitative analysis. SAGE Publications, London.

[3] Charles Hill, Rachel Bellamy, Thomas Erickson, and Margaret Burnett. 2016.
Trials and tribulations of developers of intelligent systems: A field study. In 2016
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC).
IEEE, 162–170.

[4] Rukayya Sunusi Alkassim Ilker Etikan, Sulaiman Abubakar Musa. 2015. Com-
parison of Convenience Sampling and Purposive Sampling. American Journal of
Theoretical and Applied Statistics 5, 1 (2015), 1–4. https://doi.org/10.11648/j.ajtas.
20160501.11

[5] Mirko Perkusich, Lenardo Chaves e Silva, Alexandre Costa, Felipe Ramos, Renata
Saraiva, Arthur Freire, Ednaldo Dilorenzo, Emanuel Dantas, Danilo Santos, Kyller
Gorgônio, et al. 2020. Intelligent software engineering in the context of agile
software development: A systematic literature review. Information and Software
Technology 119 (2020), 106241.

[6] Neoklis Polyzotis, Sudip Roy, Steven EuijongWhang, and Martin Zinkevich. 2017.
Data management challenges in production machine learning. In Proceedings of
the 2017 ACM International Conference on Management of Data. 1723–1726.

[7] Nayan B. Ruparelia. 2010. Software Development Lifecycle Models. SIGSOFT
Softw. Eng. Notes 35, 3 (May 2010), 8–13. https://doi.org/10.1145/1764810.1764814

[8] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. 2016. Grounded theory in
software engineering research: a critical review and guidelines. In Proceedings of
the 38th International Conference on Software Engineering. 120–131.

[9] Anselm Strauss and Juliet Corbin. 1990. Basics of qualitative research. Sage
publications.

[10] Claes Wohlin and Aybüke Aurum. 2015. Towards a decision-making structure for
selecting a research design in empirical software engineering. Empirical Software
Engineering 20, 6 (2015), 1427–1455.

[11] Tao Xie. 2018. Intelligent software engineering: Synergy between AI and software
engineering. In International Symposium on Dependable Software Engineering:
Theories, Tools, and Applications. Springer, 3–7.

https://doi.org/10.11648/j.ajtas.20160501.11
https://doi.org/10.11648/j.ajtas.20160501.11
https://doi.org/10.1145/1764810.1764814

	Abstract
	1 Introduction
	2 Background
	2.1 The need for evolving SE processes
	2.2 Software Engineering for Artificial Intelligence

	3 Method
	3.1 Planning
	3.2 Data Collecting
	3.3 Coding
	3.4 Open Coding
	3.5 Axial Coding
	3.6 Selective Coding

	4 Results
	4.1 Emerging Theory: Development Process for Machine Learning Projects
	4.2 Phase 1 - Feasibility Analysis
	4.3 Phase 2 - Development

	5 Conclusion
	References

