
Continuous Integration for Machine Learning Experiments
Reproducibility: a Practical Study

A. M. Andrade
Federal University of Ceará

Crateús-CE, Brazil

M. B. Pereira
Federal University of Ceará

Crateús-CE, Brazil

S. H. S. Silveira
Federal University of Ceará

Sobral-CE, Brazil

F. I. F. Linhares
Federal University of Ceará

Sobral-CE, Brazil

A. H. O. Neto
Federal University of Ceará

Sobral-CE, Brazil

R. M. C. Andrade
Federal University of Ceará

Fortaleza-CE, Brazil

I. L. Araújo
Federal University of Ceará

Fortaleza-CE, Brazil

ABSTRACT
The development of a Machine Learning (ML) model depends on
many variables in its training. Both model architecture-related vari-
ables, such as initial weights and hyperparameters, and general
variables, like datasets and framework versions, might impactmodel
metrics and experiment reproducibility. An application cannot be
trustworthy if it produces good results only in a specific environ-
ment. Therefore, in order to avoid reproducibility issues, some good
practices need to be adopted. This paper aims to report a practical
experience in developing a machine learning application adopting
a workflow that assures the reproducibility of the experiments and,
consequently, its reliability, improving the team productivity.

CCS CONCEPTS
• Software and its engineering→ Software development pro-
cess management; • Computing methodologies → Machine
learning.

KEYWORDS
Machine Learning Systems, Software Development Process, Soft-
ware Engineering, Intelligent Software Engineering, MLOps
ACM Reference Format:
A. M. Andrade, M. B. Pereira, S. H. S. Silveira, F. I. F. Linhares, A. H. O. Neto,
R. M. C. Andrade, and I. L. Araújo. 2021. Continuous Integration for Machine
Learning Experiments Reproducibility: a Practical Study. In Proceedings of
Brazilian Workshop on Intelligent Software Engineering (ISE’ 21). ACM, New
York, NY, USA, 4 pages. https://doi.org/10.5753/ise.2021.17279

1 INTRODUCTION
The reproducibility of computational experiments in scientificworks
is a fundamental challenge in academia and industry. According to
Beaulieu-Jones andGreene [4], scientific results can often only be re-
produced with help from the original authors. Many factors impact
the reproducibility of the software-based experiment, such as the de-
velopment environment, i.e., hardware and software specifications
and versions of employed Application Programming Interface (API).
ML-based experiments, whether from industry or academia, are
even more complex to reproduce due to many variables that im-
pact models performance metrics, such as dataset samples, models’
hyperparameters, and dependency of random parameters used to
initialize and update models.

The work of Amershi et al. [1] reports practices that Microsoft
teams used in ML projects. The authors state that the introduction
of ML capabilities in software developed with an agile process

ISE’ 21, September 27 and 28, 2021, Online Event
2021. https://doi.org/10.5753/ise.2021.17279

comes with three main complications: the data management; model
development require rare skills; modularization is impaired. All
these three factors impact reproducibility in the sense that the
datasets and model versions need to be trackable, other teams need
to be capable of reproducing and adapt the experiment. It is hard
to achieve that if the software has a high coupling.

All the factors previously described related to reproducibility
impact the reliability of scientific work considering the risk of being
outlined by its peers. According to Pineau et al. [5], the establish-
ment of methodologies to ensure reproducibility of scientific works
in ML field is one of the trends in academia since the same results
could be obtained by experimenting with the same conditions. This
is also essential in an industry ML project, which must follow a
scientific method process of hypothesis, experiment, and resulting
assessment.

To handle the reproducibility problem of ML experiments, this
proposes a work process composed of pipeline automation tools and
a well-defined workflow to perform the experiments and models
optimization. In the development process, the following automation
tools were used: the Gitlab1 Continuous Integration, Deployment
or Delivery (CI/CD) to execute an experiment pipeline, Data Ver-
sion Control (DVC)2 to handle the datasets versioning, Continuous
Machine Learning (CML)3 to provide reports automatically, Git to
version control the software and Docker to run the container that
supports the pipeline execution.

This article presents thework process applied in the development
of a ML-based Fall Detection System (FDS), executed by academy
and industry in partnership, with the description of tools, methods,
and expected results. The content is divided as follows. Section 2
presents a literature review related to this work. It shows details
of our proposed approach for the development of this research in
Section 3. Section 4 exhibits major results of our work. Section 5
presents a discussion of the main issues found in project develop-
ment. Finally, conclusions are presented in Section 6.

2 RELATEDWORKS
The literature reports some issues related to reproducibility in com-
putational experiments and ML projects as a significant question
that could compromise the work.

In [4], Beaulieu-Jones and Greene developed a general frame-
work for computational experiments using Docker and Continuous
Integration (CI) practices. The authors also describe the recurrent

1https://gitlab.com/
2https://dvc.org/
3https://cml.dev/

https://doi.org/10.5753/ise.2021.17279
https://doi.org/10.5753/ise.2021.17279


ISE’ 21, September 27 and 28, 2021, Online Event A. M. Andrade et al.

Figure 1: Process for verification of reproducibility.

problem of the lack of reproducibility and its impacts on scientific
papers. Their work has several intersections with ours, but it does
not specifically address the problems of the ML process, such as
its random nature. Our process also involved dataset versioning,
hyperparameter search and optimization, automatic reporting with
CI/CD tools, among others.

Wan et al. [6] presented a review of software engineering meth-
ods applied in MLmodel development. The review points some
directions to choose the most suitable method to implement. They
also defend the thesis that the lack of a software engineeringmethod
in ML development can cause several issues, including the possibil-
ity of reproducing the experiment. In our work we adopted some
practices listed in [6], such as data visualization, pre-processing,
cleansing and keep the initial state of experiments. Also, we started
the project with the mindset that the ML process is inherently un-
certain, finding out either intuitively, by implementing in ptactice
or foreseeing possible issues.

Wan et al. has also presented some practices in the ML software
engineering. The main difference between our approach and those
used by ML practitioners is that the tasks were well defined, al-
though an accurate plan is more challenging to implement in such
kind of process.

Ashmore et al. [3] presented a survey related to ML software
development practices containing directions to define a life cycle
for ML models and some security requirements for each stage. For
reproducibility, the most relevant activities are: Preprocessing for
the Data Management phase; for the Model Verification phase, they
recommend formal methods; for the Deployment phase, the tradi-
tional software engineering can handle integration and monitoring.
The Model Training phase still needs some study to improve reuse
and interpretation. In our work, we implemented most of the suges-
tions, however, the formal methods in the Model verification phase
is still to be done, even though we have an well defined approach
to it.

The work of Argesanu and Andreescu [2] presented an analysis
of the problems that occur in the ML life cycle related to automation
and reproducibility. The authors develop a framework to deal with
these issues and present a study case applying the framework in
an image processing problem. Their framework is batch-inference

oriented, with some differences to ours, but still similar in sev-
eral points, such as activities, automation tools, versioning and
containers.

3 METHOD
We applied the proposed workflow in a ML project that developed
a FDS using data from wearable devices. The inference solutions
consist of a model deployed in two different environments: cloud
server and edge node. The project had six months of duration an
the team was composed by 6 members of ML team, 3 members of
service team, 1 member of QA team and 2 managers.

Our proposal focused on the reproducibility of experiments,
model maintenance, and validation of the results at the beginning
of project development. In order to achieve these goals, we selected
the following tools: the Data Version Control (DVC) to version ML
artifacts labeling each new one; GitLab Continuous Integration,
Deployment or Delivery (CI/CD) to handle integration process; and
the Continuous Machine Learning (CML) to auto-generate reports
containing metrics for ML models, which were attached to each
commit.

Before the process start, the team performed a Grid Search in
order to find or optimize the model Hyperparameters. The dataset
was randomly separeted by training and test.

Although GitLab repository is a great option for versioning
project source codes, it is not recommended to versioning datasets
and models artifacts because of the expected big size of these arti-
facts. Hence, DVC is responsible for version datasets and models
and also create metafiles for each project artifact. Instead of version-
ing files, GitLab tracks only these metafiles, which DVC changes
every time an artifact is updated. Therefore, DVC sends updated
artifacts to an external storage service and updates the respective
metafile. Finally, developers commit the changes on the metafiles.

We present in Figure 1 a visual description of each step of our
proposed process for this work. Firstly, at the Update artifacts step,
the datasets and models architecture are commited to the DVC ver-
sioning system and its metafiles are updated and tracked through
Git. So, ML Integration step, whenever developers update codes
or artifact versions in GitLab, the CI/CD is triggered to reproduce
the current experiment in a Docker environment. After that, the



Continuous Integration for Machine Learning Experiments Reproducibility: a Practical Study ISE’ 21, September 27 and 28, 2021, Online Event

CML generates a report with all the relevant metrics of the ex-
periment. In the Human Comparison step, the new self-generated
results help the development team to create merge requests of new
model and software versions to be analyzed by technical leaders
by comparing report results generated by CML with the results on
the README.md, file generated in pasts merges.

Then, developers created git tags in the repository for each new
stable version of our model and deployed model on cloud and edge
proposed environments.

In order to verify the hypothesis that the application of the pro-
posed workflow can detect reproducibility issues, we worked as
defined in Figure 2. Firstly, the team needs to configure the envi-
ronment and the CI/CD pipeline. Moreover, an interactive process
performs the generation, train, and execution of new models. The
team leader is responsible for registering and reporting the repro-
ducibility issues to the team. Therefore, the team performs fixes and
verification if the experiment is correctly reproduced automatically
by the Gitlab CI/CD and reviewed by the team leader.

Figure 2: Reproducibility Issues Identification

4 RESULTS
The studied project consists of intelligent models deployed on cloud
or edge, to detect falls based on accelerometer and gyroscope sensor
data. The adoption of the proposed code integration workflow
makes it possible to reproduce ML experiments on their stable
versions considering the correct use of datasets, pre-processing
methods, and model hyperparameters in different environments,
generating the same models and measures.

The iterative approach provided a gradual increase in the repro-
ducibility, since it allowed to run the pipelines and the experiment
as a whole in different environments. The total amount of Merge
Requests is 44, which 38 was merged and 6 was closed. Through
these Merge Requests, was runned 469 pipelines from which 240
has passed. The remaining pipelines were either canceled or some
issue prevented it to succeed. At the beginning of the project, a
rate of 50.02% of the jobs succeeded and several has failed due to
environment issues. At the end of the project, a rate of 87.90% of
jobs has succeded. The pipelines and experiments are running in
different environments with the same results, which indicates a
increase in reproducibility.

In the following subsections, we present the main issues identi-
fied by the use of the CI workflow and how they were solved.

4.1 Incompatibility with frameworks versions
Many ML libraries compatible with Python language have a large
number of versions that may have internal variations in their func-
tions from one to another. Thus, the slightest variation in the library
version can compromise system integration compatibility, generat-
ing errors that require some time to find the solution by the team.
The team reported failures regarding the execution of Gitlab CI/CD
jobs compilation while the developer’s environment works prop-
erly. The use of a virtual environment of virtualenv tool4 solved
this issue, with the configuration of a set of requirements in a re-
quirements.txt file that stores all the Python dependencies and their
respective versions, enabling to have similar environments for de-
velopment and CI. These adjustments solved compiling issues for
following Gitlab CI/CD job executions. Moreover, other possible
errors regarding specific libraries versions could be verified by com-
pare metrics generated by the Gitlab CI/CD job and the metrics
obtained in the development environment.

4.2 Random Seed issues
Seeds are crucial parameters to produce pseudo-random numbers,
which, in general, are used to initialize ML models before training.
ML models, even if trained under the same conditions, cannot pro-
duce the same metrics if chosen seeds are different. Since random
seeds change every time in ML training process thus, outcomes
might not be as expected because of the difference of seeds. To avoid
that, developers had to set seeds fixed for all experiment executions.
In the developed application, random seeds can impact the dataset
partitioning in train and test and the random initial weights and
biases of a deep learning model.

4.3 Multiple Datasets issues
The dataset used in ML training and validation process is composed
of multiple datasets with compatible sensor data and class outputs
after performing cleaning and standardization. The generation of a
single dataset from multiple sources can impact the experiment’s
reproducibility because of procedures to handle and standardize
data types. To solve the issues, DVC was used to version not only
the original datasets but also the final dataset used for training.
Once the training code uses a specific dataset (DVC allows organize
datasets by name and version), if the developer correctly commit
the code and DVC metadata files, the CI training job selects exactly
the same dataset used by the developer and repeat the experiment
with the same dataset.

4.4 Hyperparameters variability
The optimization of ML models requires the adjustment of hyperpa-
rameters, which are, e.g., the number of kernels of Support Vector
Machine (SVM) or estimators in Random Forest. Developers need
to track hyperparameters for each generated model because of the
variation of models’ metrics. The tracking of hyperparameters list
in a separated file and its use in the model training solved this issue.

4Python Virtual Env - https://docs.python.org/pt-br/3/library/venv.html



ISE’ 21, September 27 and 28, 2021, Online Event A. M. Andrade et al.

5 DISCUSSION
Our approach to ML development provides an automated pipeline
for CI, which helps to achieve the model’s reproduction while in-
creases the ML system reliability. As stated in [6], the main change
from traditional software engineering to ML development is the
uncertainties in the process, which suggests that a well-defined
pipeline does not guarantee system reproducibility. The authors
in [3] presented crucial factors to apply in each process step with
high priority and risk requirements. Therefore, adopting practices
described in this work with the right mindset improves the system’s
reproducibility.

As described in Section 3, theMLmodels for the proposed system
had to be able to be deployed in two environments: cloud and edge.
TheML lifecycle used in the evaluated project included tests in these
two architectures, so reproducibility was a requirement since the
very beginning of the project. The project team reported that, before
this work, they had adopted a similar flexible lifecycle integration
with a focus on reproducibility as proposed by Beaulieu-Jones and
Greene [4]. This project’s main concern is to make the models
reproducible at the cloud, edge, and test systems. However, its main
objective is to store all needed artifacts to reproduce an experiment
with the suggestion of Docker images as a central component.
Although the proposed approach focuses on the ML development,
there is a big intersection with this pipeline and the one presented
in [4] with the difference that this work requires more components
to handle ML specific tasks.

The authors in Argesanu and Andreescu developed a platform
and a study case to deploy a ML system with less effort. As in [4],
Argesanu and Andreescu used Docker images to preserve the state
of the software used in the experiment and achieve identical results
in deployment and production. Both of the works generate the
same results in a different environment using CI/CD automated
tools. Thus, it has its limitations for a final product, such as that
results can only be recovered from a Docker image, which does
not go entirely to a production environment. Also, in this work,
the models and the results were reproduced outside a container,
making access to the resulting artifacts, i.e., models and datasets,
more effortless.

Beyond that, the proposed CI increased the productivity because,
before our approach was adopted, the reproducibility was verified
by the reviewer in its environment. After we apply our approach,
the Merge Request review tool allowed an imediate check of the
reproducibility, reducing the time spent reviewing. The majority of
the related problems had a quick solution, decreasing the time and
the need of team meetings.

The adaptation of software engineering methodologies in ML
projects that allows reproducibility in industry projects can increase
the productivity. This kind of process accepts the uncertain nature
of the process and deals with it in the best possible way. That means
to deal with hypothesis, testing and adaptation cycle with direction
and objective. Also, this can generate ML based system applicable
on high priority and ensurance requirements.

For academy, the main points of contribution are the pipelines
and reproducibility for computational simulations, which still is
a weak point of these works [4]. Another contributions are the

reliability that depends on the reproducibility, implying that the
academic ML works would need less retraction.

An improvement identified by the project team was that the
verification of reproducibility of an experiment depends on a human
that needs to analyze the metric and reject the merge/pull request.
This approach’s main restriction is its dependency on third-party
software, limiting its application on time as the technology keeps
evolving. Thus, the work would need to be updated indefinitely as
long as the used technologies have no more extended support. The
automation of this task is feasible by the use of automated testing
frameworks integrated into the Gitlab CI jobs.

Our work deals with small-sized datasets. In Big Data or Com-
puter vision scenarios, the use of DVC may not be suitable. The
same is valid for problems with the training of the model has a high
time cost. In our case, the dataset, composed only of sensor data,
has 54.2 MB, and the training time was less than five minutes.

6 CONCLUSION
This work presented a practical workflow to help the development
of a ML project considering integration, maintenance, and repro-
ducibility requirements. During the application of the proposed
process, we found similar issues to those described in the literature.
The well-defined life cycle helped the development team reduce
time spent with meetings because of the streamlines in the repro-
duction of experiments. Also, the versioning system and continuous
integration made the process trackable, allowed to find a specific
dataset, model, or experiment version with ease through the tag
system.

As a proposal for improvements of ML workflow strategies, it is
necessary to establish criteria to automatically stop continuous inte-
gration based on the system’s metrics performance and to develop
a notification system to alert developers about failures or issues
in pipeline execution. Despite the need for improvements, the pro-
posed CI workflow presented more security in development and
organization, as well as helped the team to manage the uncertainty
of ML projects and improved productivity.

REFERENCES
[1] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece

Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. 2019.
Software engineering for machine learning: A case study. In 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 291–300.

[2] Adrian-Ioan Argesanu and Gheorghe-Daniel Andreescu. 2021. A Platform to
Manage the End-to-End Lifecycle of Batch-Prediction Machine Learning Models.
In 2021 IEEE 15th International Symposium on Applied Computational Intelligence
and Informatics (SACI). 000329–000334. https://doi.org/10.1109/SACI51354.2021.
9465588

[3] Rob Ashmore, Radu Calinescu, and Colin Paterson. 2021. Assuring the Machine
Learning Lifecycle: Desiderata, Methods, and Challenges. ACM Comput. Surv. 54,
5 (05 2021), 39.

[4] Brett K. Beaulieu-Jones and Casey S. Greene. 2017. Reproducibility of computa-
tional workflows is automated using continuous analysis. Nature Biotechnology
35, 4 (01 Apr 2017), 342–346. https://doi.org/10.1038/nbt.3780

[5] Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière, Alina
Beygelzimer, Florence d’Alché Buc, Emily Fox, and Hugo Larochelle. 2020. Improv-
ing Reproducibility in Machine Learning Research (A Report from the NeurIPS
2019 Reproducibility Program). arXiv:2003.12206 [cs.LG]

[6] Zhiyuan Wan, Xin Xia, David Lo, and Gail C. Murphy. 2019. How does Machine
Learning Change Software Development Practices? IEEE Transactions on Software
Engineering (2019), 1–1. https://doi.org/10.1109/TSE.2019.2937083

https://doi.org/10.1109/SACI51354.2021.9465588
https://doi.org/10.1109/SACI51354.2021.9465588
https://doi.org/10.1038/nbt.3780
https://arxiv.org/abs/2003.12206
https://doi.org/10.1109/TSE.2019.2937083

	Abstract
	1 Introduction
	2 Related Works
	3 Method
	4 Results
	4.1 Incompatibility with frameworks versions
	4.2 Random Seed issues
	4.3 Multiple Datasets issues
	4.4 Hyperparameters variability

	5 Discussion
	6 Conclusion
	References

