
Realizing Refactoring Prediction through Deep Learning
Lucas Rafael Rodrigues Pereira
Fedaral University of Lavras - UFLA

Lavras, Brazil

Dilson Lucas Pereira
Fedaral University of Lavras - UFLA

Lavras, Brazil

Rafael Serapilha Durelli
Fedaral University of Lavras - UFLA

Lavras, Brazil

ABSTRACT
Refactoring is the process of changing the internal structure of a
software in order to improve its quality, without modifying its be-
havior. Recent studies have shown that the act of refactoring brings
positive results for maintaining and understanding the code and
the system as a whole. It turns out that, currently, this method is
still little used, with expertise and intuition being the main factors
that determine the need for software refactoring. Before starting
the refactoring process, an analysis is essential to check whether
refactoring is really necessary. Therefore, the present study an-
alyzes artificial intelligence techniques, such as Deep Learning,
to predict when software refactoring is essential. Deep Learning
models like CNN, RNN, LSTM and DenseLayer were analyzed and
compared using precision, recall and accuracy metrics. The results
demonstrated that Machine Learning models performed better than
Deep Learning algorithms using the same data set, however, the
good performance of Deep Learning models stands out in scenarios
where the data is very unbalanced.

KEYWORDS
Refactoring, Deep Learning, Machine Learning, Software Engineer-
ing

1 INTRODUCTION
Over the years, studies have established a correlation between refac-
toring operations and software quality [2, 17, 20]. Deciding when
and what to refactor poses the biggest challenge for developers
as it marks the initiation of the refactoring process [22]. Software
development teams often perceive refactoring as technical debt,
and like any other change, it comes with associated costs. These
costs can be even more significant when the size or impact of the
refactoring is unknown, as delaying it may lead to more extensive
impacts caused by the "defective" code [22].

To aid with the refactoring process and minimize costs, devel-
opers have been employing static analysis tools like Sonarqube
[28], PMD [4], and ESLint [25][10]. However, these tools primarily
rely on strategies based on well-known and cataloged code smells,
such as God Class and Long Method. While code smells serve as
sufficient motivation for refactoring, they are not the sole reason
for it. Consequently, the strategy of relying solely on static and
heuristic analysis tools may not be as effective [16].

The tools utilized for static analysis often exhibit a considerable
number of false positives when providing refactoring recommen-
dations, leading to a loss of confidence among developers [12].
Although these tools offer some degree of customization, the com-
plexity of modern software, encompassing a vast array of classes,
frameworks, and packages, makes it likely that false positives will
still arise [12].

The application of Deep Learning in the realm of Software Engi-
neering has gained significant relevance in recent years. This has

led to the development of novel models aimed at addressing diverse
software quality challenges, defining architectures, modularization,
and tackling specific software issues [6].

Researchers have been exploring the use of Artificial Intelligence
(AI) approaches to recommend refactoring points, employing tech-
niques such as search algorithms [23, 27], pattern mining [9], and
machine learning [5]. However, when employing Deep Learning as
a Machine Learning technique, there is an expectation of obtaining
favorable results in predicting software code refactoring, particu-
larly when applied across different areas of software engineering,
such as predicting defects [13], code understanding [21], and code
smells [7].

Recent years have witnessed an increasing number of studies
exploring the potential of machine learning and deep learning to
enhance and facilitate the refactoring process. Within this context,
the primary objective of this paper is to determine the feasibility of
predicting the need for refactoring through a Deep Learning model.
We have chosen to direct our efforts based on the following propo-
sition: "Can a Deep Learning model anticipate software code
refactoring?". To address this inquiry, the study was partitioned
into three sub-questions. The first sub-question is:

𝑅𝑄1 - "How to transform software codes into valid input for a
Deep Learning model?"

To address this challenge, two source code representation models
were evaluated: CODEBERT[14] and Code2Vec[3]. Among the two
models, CODEBERT[14] was chosen for its capability to transform
software codes into vectors and assign weights to these vectors
based on the selected programming language. Moreover, it offers
pre-trained models in JAVA. By leveraging CODEBERT[14], instead
of directly inputting raw software code to the model, a more feasi-
ble input is provided, enabling easier training. This is particularly
advantageous as it allows the application of algorithms such as
oversampling, undersampling, CNN, among others, that specifi-
cally operate with numerical vectors.

The second sub-question is:

𝑅𝑄2 - "Which Deep Learning model will perform best in pre-
dicting refactoring in software code?"

By employing pre-processing techniques to address class im-
balance and leveraging neural networks, Long Short Term Mem-
ory(LSTM), Batch normalization, and Pooling, we were able to
attain an accuracy of 69% and a precision of 70%. Such results can
be deemed optimistic, especially in an unbalanced test data scenario.

The third sub-question is:

𝑅𝑄3 - "How does the Deep Learning model perform compared
to machine learning models"



Lucas Rafael Rodrigues Pereira, Dilson Lucas Pereira, and Rafael Serapilha Durelli

To assess the outcomes of the Deep Learning model in com-
parison to machine learning models, we selected a study [5] that
employs the same dataset and presents results for various ma-
chine learning algorithms. The main contributions of this work
are threefold: (i) Development of a methodology for predicting Ex-
tract Method using Deep Learning; (ii) Evaluation and comparison
of different Deep Learning models to ascertain their effectiveness;
(iii) Establishment of a groundwork for future research in other
types of refactoring or different software languages.

2 BACKGROUND
2.1 Refactoring
Code Refactoring or just refactoring is the practice of modifying
software to enhance its internal structure while preserving its ex-
ternal behavior. A paramount reason to prioritize code refactoring,
particularly during the development cycle, is to elevate code qual-
ity, mitigate the occurrence of defects, and enhance scalability and
maintainability for future code maintenance.

Nonetheless, determining the extent and specific areas to refac-
tor poses a challenge for many developers. Engaging in refactoring
activities incurs additional costs, as it necessitates the involvement
of experienced developers to thoroughly analyze the code and un-
derstand the entire context of the application. Unfortunately, such
efforts are rarely compensated and are often considered as technical
debt [18, 19].

The significance of refactoring becomes evident in the time saved
when implementing code changes. By refactoring and organizing
the code during development, developers spend less time decipher-
ing and understanding the code. Consequently, the investment
made in refactoring or organization processes is recouped in both
the short and long term [18].

The identification and removal of code smells in the code can be
automatically suggested by a tool. However, recent studies delve
into the application of Machine Learning, search-based algorithms,
or heuristics [8] to discover refactoring opportunities. Given the
increasing popularity of usingMachine Learning algorithms to iden-
tify refactoring points in software, this study specifically focuses on
applying the relatively less explored Deep Learning technique to
evaluate its effectiveness in detecting refactoring points in software
code.

2.2 Deep Learning based refactoring
The ability of machine learning models to interpret code was made
possible with innovative approaches like CODEBERT[14], which
transforms software code into numerical vectors for assessment by
artificial intelligence models.

In a comprehensive literature review conducted by Naik et al.
[24], the analysis covers 17 studies focusing on the use of Machine
Learning and Deep Learning techniques for software code refactor-
ing. The review delves into the techniques employed by each study,
the programming languages used for training, as well as model
evaluation and pre-processing techniques. From this investigation,
it was concluded that recurrent neural networks (RNN), convolu-
tional neural networks (CNN), multilayer perceptrons (MLP), and
graph neural networks (GNN) emerged as the most widely used

deep learning models, with MLP showing the most promising per-
formance.

Moreover, the study by Naik et al. [24] reveals that the majority
of these studies are predominantly based on JAVA, focus on method-
level refactorings, and use only one programming language. These
characteristics closely align with the model developed in this work.

3 APPROACH
The model comprises three main phases: Data Collection, Training
& Testing, and Model Evaluation. Each of these phases will be
outlined briefly here and then explored in further detail in dedicated
subsections.

The data collection phase focuses on selecting the dataset, mining
the chosen repositories, and pre-processing the data. Upon detecting
a refactoring of type "Extract Method," the methods involved in
the commit are gathered, and each method is labeled to indicate
the presence or absence of the "Extract Method" refactoring. These
labeled methods are then converted into binary tokens (0,1) and
assigned pre-trained weights using CodeBERT[14].

Subsequently, the training phase commences, where the pre-
processed data is trained and tested using various Deep Learning
algorithms. The size and number of Deep Learning layers are ad-
justed based on the algorithm used, such as RNN, CNN, and LSTM,
to achieve optimal results for each model.

Finally, the model’s outcomes are collected, and the accuracy of
each model is assessed. For each model, precision, accuracy, and
recall are evaluated. To evaluate the overall model performance,
the results from Machine Learning[5] algorithms, as well as results
obtained from developers, are also considered.

3.1 Experimental Sample
In order to establish a meaningful comparison with the machine
learning algorithms, we adopted the same sampling strategy as used
by [5]. This involved sampling a large number of Java projects from
three different sources: (i) Apache Software Foundation (ASF): ASF
is an organization that hosts and supports a wide range of Apache
projects. The repository used in this study contains 860 Java-based
projects; (ii) F-Droid: F-Droid is a repository for Android code,
hosting a collection of 1352 open-source mobile app projects; (iii)
GitHub: For GitHub it was planned to use the first 10000 repositories
containing only JAVA code, but the tools were able to successfully
collect only 9072.

The combined dataset from the three repositories provides a
diverse range of software projects, exhibiting significant variations
in terms of code quantity, size, complexity, domains, technologies
used, and development teams involved. This diversity ensures that
the dataset is representative of real-world software projects, making
the results of the study more applicable and generalizable.

3.2 Refactoring Extraction
The data collection process was conducted using the Refactoring
Miner tool [29]. This tool operates by cloning the repositories se-
lected from the designated repositories list. It then examines the
history of the master branch, detecting various types of refactoring
present in the commits. For each cloned repository, Refactoring



Realizing Refactoring Prediction through Deep Learning

Miner accesses the master branch and analyzes all commits, starting
from the oldest to the newest.

The tool conducts a pairwise analysis of commits, accurately
determining, with 98% accuracy, the types of refactoring that oc-
curred between these two commits. Upon detecting a refactoring
of the EXTRACT METHOD type, the code before the refactoring is
stored, along with a label indicating the type of refactoring. The
final outcome of this data collection process is a table containing
multiple methods found in the repositories. One column of the
table contains these methods, while the other column includes bi-
nary markers (0s and 1s) indicating the presence or absence of the
method extraction refactoring. This dataset forms the foundation
for the subsequent stages of the research.

After the data collection, a cleaning process was performed to
address issues such as duplicate codes and methods with conflicting
labels. During the collection process, a method that was selected
for containing a refactoring in one commit might be marked as hav-
ing no refactoring when examined in another commit. To prevent
redundancies during the training process and to avoid confusion
in the learning process, all duplicate codes were removed from the
database. Additionally, duplicate codes with different labels were
excluded, except for a single copy containing a refactoring label, to
ensure data consistency and accuracy in the subsequent stages of
the research.

3.3 Tokenization of source code
Once the methods have been collected and properly classified, it is
still necessary to transform the data into a valid input for the Deep
Learning models. Source code and files in natural language require
treatment so that they can be used by Deep Learning algorithms
that only use real numbers.

The decision to use CODEBERT[14] for transforming source
code into numerical vectors was made to take advantage of the
possibility of using pre-trained data, saving time and labor costs.
CODEBERT[14] utilizes the BERT[11] architecture, which employs
transformers in an encoder-decoder architecture with an attention
mechanism for natural language pre-training. The transformers
in BERT[11] are bi-directional, enabling context extraction from
words in both left-to-right and right-to-left directions. This ap-
proach allows CODEBERT to efficiently convert natural language,
including source code, into numeric arrays for use in Deep Learning
algorithms.

Figure 1: embedding process utilizing CODEBERT

3.4 Model Training
To train the Deep Learning model for predicting whether a method
should undergo EXTRACT METHOD type refactoring, a dataset
containing real examples of methods that underwent refactoring
and examples without refactoring was used.

The choice of the EXTRACT METHOD type for this study is
due to its popularity among others refactorings, as it contains a
larger number of instances, which is essential for improving the
performance of Deep Learning algorithms.

The following four algorithms were used to train and evaluate
the performance of the models:

• CNN: Convolutional neural networks are widely used in
training with images and computer vision, but because they
deal well with binary classification data, it is believed to
have relevance for training [26].

• RNN: Recurrent neural networks, designed to handle se-
quential data such as text and software code. They have
loops in their structure that allow relevant information to
be passed on [15].

• Dense layers: Dense layer is the basic layer in deep neural
networks. In it, all neurons are connected to all neurons
in the previous layer and the next layer and generate an
output through an activation function.

• LSTM: Variation of recurrent neural networks (RNN) adapted
to handle very long sequences and retain information longer
than a simple recurrent network [15].

To address the natural data imbalance issue, the simple undersam-
ple algorithm was employed. This technique balanced the dataset
by selecting an equal number of methods classified as "without
refactoring" to match the number of methods classified as "with
refactoring," resulting in a 50% balance on each side.

After balancing the data, the hyperparameters of each algorithm
were fine-tuned, and the number of layers was adjusted based on
the complexity of the algorithm and its performance to achieve
satisfactory results. Once the models were trained, the prediction
for a given method would be the probability of whether it should
or should not undergo refactoring, providing valuable insights to
developers for code improvement.

3.5 Evaluation
To address the research questions posed in this paper, the mean
precision, accuracy, and recall of each of the four algorithms were
compared, considering different configurations and hyperparam-
eterization. The performance of each Deep Learning model was
assessed in comparison with others, to identify the most effective
one, and then compared with Machine Learning models from the
literature [5]. Furthermore, the results obtained from the models
were compared with a survey involving real developers to gain
additional insights into the model’s performance. This comprehen-
sive evaluation aimed to provide a robust understanding of the
predictive capabilities of the Deep Learning models for software
code refactoring.

The work by [5] already provides the precision, accuracy, and
recall of the models, making it unnecessary to recalculate these
measures for comparison purposes. By leveraging the existing re-
sults from that study, we can efficiently compare the performance
of our Deep Learning models with the Machine Learning models,
providing valuable insights into the effectiveness of our approach
for predicting software code refactoring.



Lucas Rafael Rodrigues Pereira, Dilson Lucas Pereira, and Rafael Serapilha Durelli

3.6 Implementation and execution
All the refactoring instances collected by RefactoringMiner [29]
were stored in a local MySQL database. To extract the methods
from the commits, a Python script was developed to detect and
separate the methods efficiently. This script helped in organizing
and preprocessing the data for further analysis and training of the
Deep Learning models.

The data collection algorithm, executed on a machine with 16GB
of RAM, a Quadcore CPU with 3.2GHz of processing, and a dedi-
cated SSD, took an average of 16 minutes per repository to collect
data from all established repositories. However, it is worth noting
that around one-tenth of the repositories took more than an hour
to run, leading to occasional connection errors between MySQL
and JAVA or Python during the process. Despite these challenges,
the data collection was successfully completed, allowing for further
analysis and training of the Deep Learning models.

For training the Deep Learning models, Google Collab Pro was
utilized, which provided a virtual machine with 50GB of RAM, an
adjustable CPU, and 200GB of disk space. The training process
for each of the algorithms, consisting of 200 epochs, took approxi-
mately 24 hours to complete. The use of Google Collab Pro enabled
efficient and resourceful training of the models, contributing to the
successful evaluation and comparison of their performance.

4 RESULTS
All the questions have been addressed and answered herein.

𝑅𝑄1 - "How to transform software codes into valid input for a
Deep Learning model?"

After implementing and analyzing the Deep Learning models
using the Code2Vec and CODEBERT source code interpretation
algorithms, we obtained the results presented in Tables 1 and 2.
These tables display the mean precision, accuracy, and recall values
for each model, along with their respective hyperparameter config-
urations. The results offer insights into the models’ performance
in predicting software code refactoring, specifically the EXTRACT
METHOD type.

The comparison between the models using different algorithms
sheds light on their effectiveness in detecting potential refactoring
points in the software code. These findings contribute to address-
ing the research questions and demonstrate the potential of Deep
Learning techniques for automating refactoring recommendations.

Code2Vec Precision Recall Accuracy
CNN 22.00 13.47 89.59
RNN 21.32 11.02 89.95
LSTM 71.72 00.96 52.93
Dense Layers 16.96 14.56 89.95

Table 1: Precision, Recall and Accuracy of Deep Learning
models trained using Code2Vec

CODEBERT Precision Recall Accuracy
CNN 56.40 80.09 58.64
RNN 52.23 93.82 53.49
LSTM 66.59 59.48 65.17
Dense Layers 65.68 58.21 64.72

Table 2: Precision, Recall and Accuracy of Deep Learning
models trained using CODEBERT

Precision Recall Accuracy
CNN 56.40 80.09 58.64
RNN 52.23 93.82 53.49
LSTM 66.59 59.48 65.17
Dense Layer 65.68 58.21 64.72
Average 59.97 72.90 60.50

Table 3: Precision, Recall and Accuracy of Deep Learning
models trained with the same dataset

Observation 1: CODEBERT performed better than
Cod2Vec in the four Deep Learning models. The observed
results indicate that CODEBERT[14] performed better com-
pared to Code2Vec. As much as the accuracy values of Code2Vec
exceed the values generated by CODEBERT, the precision and
the recall indicate a better prediction rate of CODEBERT.

Observation 2: CODEBERT was the model chosen to in-
terpret the source codes used in this work. In addition to
the superior performance of Code2Vec, CODEBERT does not
require local training like Code2Vec, which makes the replica-
tion of the experiment more reliable, such as reducing the cost
of processing the project.

𝑅𝑄2 - "Which Deep Learning model will perform best in pre-
dicting refactoring in software code?"

The table 3 displays the precision, recall and accuracy obtained
in each of the proposed Deep Learning models.

Observation 3: LSTM was the model with the best result
among the proposed models. LSTM achieved an average
accuracy of 65.17%, precision of 66.59% and recall of 59.48%
during the training of the datasets. The second best performing
model was Dense Layers with results of 64.72% in accuracy,
65.68% in precision and 64.72% in recall when trained with the
same data.

Observation 4: RNN and CNN present much higher recall
than precision. The RNN and CNN models presented, respec-
tively, a recall of 93.82% and 80.09% when trained with the same
database. However, the accuracy of the models was 52.23% for
RNN and 56.40% for CNN. The LSTM and Dense Layers models
had superior accuracy and precision, but had a much lower
recall when compared to the RNN and CNN models.



Realizing Refactoring Prediction through Deep Learning

Observation 5: All models managed to perform well in
relation to the natural imbalance of the data. Although
the proportion of non-refactored methods was almost 90% in
relation to the number of refactoring methods with method
extraction, the accuracy of all models remained above 52.23%,
with a minimum recall of 53.49%.

𝑅𝑄3 - "How does the Deep Learning model perform compared
to machine learning models"

To compare the performance of the Deep Learning models with
the Machine Learning models, we will compare the results obtained
with the work of Aniche et al., [5], who analyzed and mapped the
results of 6 different Machine Learning algorithms. The results can
be checked in Table 4

Precision Recall Accuracy
Logistic Regression 0.80 0.87 0.82
SVM 0.77 0.88 0.80
Naive Bayes(gaussian) 0.65 0.95 0.70
Decision Tree 0.81 0.86 0.82
Random Forest 0.80 0.92 0.84
Neural Network 0.84 0.84 0.84
Average 0.77 0.88 0.80

Table 4: Precision, Recall and Accuracy of Machine Learning
models

In Table 5 we can see the comparison between the mean ac-
curacy, precision and recall of the Deep Learning and Machine
Learning models. All models use the same GitHub, Apache and
F-droid database, which makes comparison possible.

Precision Recall Accuracy
Average Deep Learning Models 0.59 0.72 0.60
Average Machine Learning Models 0.77 0.88 0.80
Difference -0.18 -0.16 -0.20

Table 5: Comparison between Deep Learning and Machine
Learning models

Observation 6: Machine Learning models demonstrated
better performance compared to Deep Learning models.
As all models share the same database, it is possible to compare
the results, however, it is believed that with a larger and more
diverse database the Deep Learning algorithms can improve the
results.

In order to bring another comparison of the results found in
relation to the performance of the models, 10 JAVA developers were
consulted and asked if a certain method should undergo refactoring.
The methods in question were extracted from the database used to
train the models. The developers’ response can be analyzed in the
following Table 6

The level of experience of the developers can be seen in Figure 2
and the question form used can be found in the domain: [1].

Figure 2: Level of expertise of developers who participated
in the survey

Method 1 Method 2 Method 3 Method 4 Method 5 Precision
Dev 1 1 0 1 0 1 0.6
Dev 2 1 1 1 1 1 1.0
Dev 3 1 0 0 1 1 0.6
Dev 4 1 0 1 1 1 0.8
Dev 5 1 0 0 1 1 0.6
Dev 6 1 0 1 1 1 0.8
Dev 7 1 0 0 0 0 0.2
Dev 8 1 1 0 1 0 0.6
Dev 9 1 0 1 1 1 0.8
Dev 10 1 0 1 1 1 0.8
Precision 1.0 0.2 0.6 0.8 0.8
Table 6: Developer success rate when predicting a refactoring
analyzed by Deep Learning models

Observation 7: Developers have a success rate similar to
that of Deep Learningmodels. The average success rate of de-
velopers with 5 methods taken from the dataset used to train the
Deep Learning models obtained a difference of approximately
8%, as shown in Table 7

Precision
Average Deep Learning Models 0.5997
Average Developers 0.6800
Difference -0.0803

Table 7: Comparison between the accuracy of Deep Learning
models with the average accuracy of developers

5 THREATS TO VALIDITY
5.1 Construction Validity
During the process of collecting the repositories, the use of the
RefactoringMiner tool was mentioned[29]. This tool has an accu-
racy of 98% and a recall of 87%, for the use of EXTRACTMETHODS,
so when collecting the repositories we do not re-calculate these
values based on the collected data. In order to compare results with
Machine Learning algorithms, we chose to use the same reposi-
tories used by [5]. However, the extraction process is costly and
can lead to difficulties for those mining the same repository in-
stances. Approximately 8% of the repositories failed to be collected,
but this number may vary according to the resources allocated for
extraction, such as the tools used to mine the datasets.



Lucas Rafael Rodrigues Pereira, Dilson Lucas Pereira, and Rafael Serapilha Durelli

5.2 Internal Validity
The natural imbalance of the EXTRACT METHOD class presents
many more instances of non-refactored classes than of refactored
classes in a ratio of 9 to 1. To deal with the imbalance, data balancing
algorithms were used without creating generic values, such as
Random Undersampler. Knowing that pre-processing the data can
lead to less accurate models, the performance of the model can
vary when compared to a scenario based on reality. The order of
refactorings was not considered for this study. It is believed that the
current state of the method should be sufficient for assessing the
need for EXTRACT METHOD refactoring. By taking into account
only the body of the method to analyze Deep Learning models,
relevant information external to the method may be lost when
doing the refactoring. Future work should take this aspect into
account.

5.3 External Validity
Results are based on Open Source projects, which may affect gen-
eralizability in an industrial context. It is necessary, however, to
replicate this study for a dataset with projects actually in use by the
industry and with a greater range of domains. By choosing JAVA
as the object of study, the results found may not be replicable for
other programming languages. It is believed that the results may
be similar for any object-oriented language such as JAVA, however
future work should take this fact into account.

6 CONCLUSION
This research work focuses on the importance of software refactor-
ing and proposes a Deep Learning model, using CODEBERT as a
basis, to predict when a method should be refactored through the
EXTRACT METHOD. The study compares Deep Learning models
and assesses their performance against Machine Learning models.
While the Deep Learning models achieved favorable results, the
Machine Learning models were more effective for predicting EX-
TRACT METHOD refactorings in the same dataset. Nevertheless,
the research provides valuable insights for predicting refactoring
in software code and suggests avenues for further exploration in
the realm of Deep Learning and software quality. Future work can
expand the scope to include other types of refactoring and explore
different approaches to leverage Deep Learning effectively in pre-
dicting refactorings and addressing software quality issues.

REFERENCES
[1] [n. d.]. Formulário de validação de modelos DL. https://forms.gle/

pL9HRfZnJmocQwgt6. Acessado: 2021-06-11.
[2] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer, Ali Ouni, and Marouane

Kessentini. 2019. Do design metrics capture developers perception of qual-
ity? an empirical study on self-affirmed refactoring activities. arXiv preprint
arXiv:1907.04797 (2019).

[3] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learn-
ing distributed representations of code. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 1–29.

[4] Juan Martín Sotuyo Dodero Clément Fournier Pelisse Romain Robert Sösemann
Andreas Dangel, BBG. 2022. https://github.com/pmd/pmd.

[5] Mauricio Aniche, Erick Maziero, Rafael Durelli, and Vinicius Durelli. 2020. The
effectiveness of supervised machine learning algorithms in predicting software
refactoring. IEEE Transactions on Software Engineering (2020).

[6] Anders Arpteg, Björn Brinne, Luka Crnkovic-Friis, and Jan Bosch. 2018. Software
engineering challenges of deep learning. In 2018 44th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA). IEEE, 50–59.

[7] Muhammad Ilyas Azeem, Fabio Palomba, Lin Shi, and QingWang. 2019. Machine
learning techniques for code smell detection: A systematic literature review and
meta-analysis. Information and Software Technology 108 (2019), 115–138.

[8] Abdulrahman Ahmed Bobakr Baqais and Mohammad Alshayeb. 2020. Automatic
software refactoring: a systematic literature review. Software Quality Journal 28,
2 (2020), 459–502.

[9] Gabriele Bavota, Andrea De Lucia, Andrian Marcus, and Rocco Oliveto. 2014.
Recommending refactoring operations in large software systems. In Recommen-
dation Systems in Software Engineering. Springer, 387–419.

[10] Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. 2016.
Analyzing the state of static analysis: A large-scale evaluation in open source soft-
ware. In 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), Vol. 1. IEEE, 470–481.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

[12] Lisa Nguyen Quang Do, James R. Wright, and Karim Ali. 2022. Why Do Software
Developers Use Static Analysis Tools? A User-Centered Study of Developer
Needs and Motivations. IEEE Transactions on Software Engineering 48, 3 (2022),
835–847. https://doi.org/10.1109/TSE.2020.3004525

[13] Marco D’Ambros, Michele Lanza, and Romain Robbes. 2012. Evaluating defect
prediction approaches: a benchmark and an extensive comparison. Empirical
Software Engineering 17, 4 (2012), 531–577.

[14] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

[15] SeppHochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[16] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why don’t software developers use static analysis tools to find bugs?. In
2013 35th International Conference on Software Engineering (ICSE). IEEE, 672–681.

[17] Yoshio Kataoka, Takeo Imai, Hiroki Andou, and Tetsuji Fukaya. 2002. A quanti-
tative evaluation of maintainability enhancement by refactoring. In International
Conference on Software Maintenance, 2002. Proceedings. IEEE, 576–585.

[18] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2012. A field
study of refactoring challenges and benefits. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering. 1–11.

[19] Philippe Kruchten, Robert L Nord, and Ipek Ozkaya. 2012. Technical debt: From
metaphor to theory and practice. Ieee software 29, 6 (2012), 18–21.

[20] Robert Leitch and Eleni Stroulia. 2004. Assessing the maintainability benefits of
design restructuring using dependency analysis. In Proceedings. 5th International
Workshop on Enterprise Networking and Computing in Healthcare Industry (IEEE
Cat. No. 03EX717). IEEE, 309–322.

[21] Kui Liu, Dongsun Kim, Tegawendé F Bissyandé, Taeyoung Kim, Kisub Kim, Anil
Koyuncu, Suntae Kim, and Yves Le Traon. 2019. Learning to spot and refactor
inconsistent method names. In 2019 IEEE/ACM 41st International Conference on
Software Engineering (ICSE). IEEE, 1–12.

[22] Mateus Lopes and Andre Hora. 2022. How and why we end up with complex
methods: a multi-language study. Empirical Software Engineering 27, 5 (2022),
1–42.

[23] Thainá Mariani and Silvia Regina Vergilio. 2017. A systematic review on search-
based refactoring. Information and Software Technology 83 (2017), 14–34.

[24] Purnima Naik, Salomi Nelaballi, Venkata Sai Pusuluri, and Dae-Kyoo Kim. 2023.
Deep Learning-Based Code Refactoring: A Review of Current Knowledge. Journal
of Computer Information Systems (2023), 1–15.

[25] Milos Djermanovic Nicholas C. Zakas, Brandon Mills. 2022. https://eslint.org/.
[26] Keiron O’Shea and Ryan Nash. 2015. An introduction to convolutional neural

networks. arXiv preprint arXiv:1511.08458 (2015).
[27] Mark O’Keeffe and Mel O Cinnéide. 2008. Search-based refactoring for software

maintenance. Journal of Systems and Software 81, 4 (2008), 502–516.
[28] SonarSource S.A. 2008–2022. https://sonarqube.org.
[29] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. 2020. RefactoringMiner 2.0.

IEEE Transactions on Software Engineering (2020), 21 pages. https://doi.org/10.
1109/TSE.2020.3007722

https://forms.gle/pL9HRfZnJmocQwgt6
https://forms.gle/pL9HRfZnJmocQwgt6
https://github.com/pmd/pmd
https://doi.org/10.1109/TSE.2020.3004525
https://eslint.org/
https://sonarqube.org
https://doi.org/10.1109/TSE.2020.3007722
https://doi.org/10.1109/TSE.2020.3007722

	Abstract
	1 Introduction
	2 Background
	2.1 Refactoring
	2.2 Deep Learning based refactoring

	3 Approach
	3.1 Experimental Sample
	3.2 Refactoring Extraction
	3.3 Tokenization of source code
	3.4 Model Training
	3.5 Evaluation
	3.6 Implementation and execution

	4 Results
	5 Threats to validity
	5.1 Construction Validity
	5.2 Internal Validity
	5.3 External Validity

	6 Conclusion
	References

