
Using Machine Learning for Non-Functional Requirements
Classification: A Practical Study

Daniel Abella C. M. de Souza
Federal University of Campina

Grande (UFCG))
Campina Grande, Paraiba - Brazil
daniel.abella@virtus.ufcg.edu.br

Danyllo Albuquerque
Federal University of Campina

Grande (UFCG)
Campina Grande, Paraiba - Brazil

danyllo@copin.ufcg.edu.br

Emanuel Dantas Filho
Federal Institute of Paraiba (IFPB)
Campina Grande, Paraiba - Brazil

emanuel.filho@ifpb.edu.br

Mirko Perkusich
Federal University of Campina

Grande (UFCG)
Campina Grande, Paraiba - Brazil
mirko@embedded.ufcg.edu.br

Angelo Perkusich
Federal University of Campina

Grande (UFCG)
Campina Grande, Paraiba - Brazil
perkusich@virtus.ufcg.edu.br

ABSTRACT
Non-Functional Requirements (NFR) are used to describe a set of
software quality attributes such as reliability, maintainability, and
performance. Since the functional and non-functional requirements
are mixed together in software documentation, it requires a lot
of effort to distinguish them. This study proposed automatic NFR
classification by using machine learning classification techniques.
An empirical study with three machine learning algorithms was
applied to classify NFR automatically. Precision, recall, F1-score,
and accuracy were calculated for the classification results through
all techniques. The results showed that the SGD SVM classifier
achieves the best results where precision, recall, F1-score, and ac-
curacy reported were 0.66, 0.61, and 0.61.

KEYWORDS
Non-Functional Requirements, Classification, Machine Learning,
Text Analysis.

1 INTRODUCTION
Functional Requirements (FR) specify software behavior listed by
stakeholders, whereas, Non-Functional Requirements (NFR) de-
scribe how the software system will provide the means to perform
functional tasks. Software requirements specification (SRS) is the
most important artifact, which is composed of FR and NFR. Since
both types of requirements are mixed within the SRS, it becomes
hard to detect and extract manually. Moreover, it is reported that
neglecting NFR leads to increased production cost or even project
failure [3].

In this context, early NFR detection is essential because it enables
system-level constraints to be considered and incorporated into
early architectural designs [8]. However, classifying requirements
manually is not feasible in terms of required time, budget, and accu-
racy. To overcome these limitations, various approaches have been
presented to classify software NFR into different categories. These
approaches were based on retrieval-based [3], linguistic knowledge-
based [4], and CNN-based [6]. Although several machine learning
techniques were employed for automatic NFR classification tasks,
there is no extensive comparison among machine learning feature
extraction and classification techniques. Feature selection is an

important task in machine learning to increase classification perfor-
mance [9]. However, investigation of NFR classification accuracy
combining different feature extraction techniques such as Bag of
Words (BoW) and Term Frequency-Inverse Document Frequency
(TF-IDF). with various classification algorithms named Multinomial
Naive Bayes (MNB), Gaussian Naive Bayes (GNB), Bernoulli Naive
Bayes (BNB), K-nearest Neighbors (KNN), Support Vector Machines
(SVM), Stochastic Gradient Descent (SGD SVM) and Decision Trees
(Dtree) a significant research directions.

This paper proposed an approach to the automatic NFR clas-
sification technique combining feature extraction with three ma-
chine learning algorithms. The PROMISE [1] software requirement
dataset was used to investigate the classification accuracy of consid-
ered techniques with several measures. The requirements dataset
has been pre-processed to remove unnecessary characters, which
will be converted to features using the TF-IDF technique. This tech-
nique was chosen due to its performance compared to another
technique [2], and it has been widely used in other NFR classifica-
tion studies [10][3]. Next, BNB, KNN, SVM, and SGD algorithms
were applied to train the classifier. Finally, the classification per-
formance of each method has been compared using different NFR
classifying results.

The remainder of this paper is organized as follows; Sections II
and III illustrate the proposed method and result analysis, respec-
tively. Finally, sections IV and V expose the main limitations of this
study and conclude this paper with future research directions.

2 STUDY CONFIGURATION
This study seeks to find the best pair of feature extraction and
machine learning algorithms aiming at software requirement classi-
fication. This process considers NB, KNN, SVM, and D-tree machine
learning algorithms and TF-IDF feature extraction techniques. The
whole process of this study is divided into the following four steps
and depicted in Figure 1. The input of this methodwas the PROMISE
requirement specification. The details regarding the steps are elab-
orated in what follows.

Data Processing. Initially, we seek to clean and preprocess the
dataset used in this study. This task was composed of four sub-steps:



ISE ’23, September 26, 2023, Campo Grande-MS, Brazil Souza et al.

Figure 1: Method Overview.

(1) Removing Special Characters: Special characters and symbols,
typically non-alphanumeric, introduce extraneous noise into
the experimental dataset. To enhance data quality, regular
expressions were employed to systematically remove these
special characters.

(2) Applying Case-Folding: In English, words can appear in ei-
ther upper-case or lower-case forms while conveying similar
meanings. To ensure consistent treatment of cases, a case-
folding procedure was implemented.

(3) Excluding Stop Words: Certain words, such as "a," "an," and
"the," have minimal impact on the semantic content of soft-
ware requirements. For this study, a commonly used natural
language processing stop words corpus from the Natural
Language Toolkit (NLTK) was employed to exclude these
terms.

(4) Tokenization: In this sub-step, longer blocks of text are di-
vided into smaller units, referred to as tokens. In our case,
software requirements were tokenized into sentences, which
were subsequently segmented into individual words.

Feature Extraction. This step transforms a list of essential
words into a feature set used by a machine learning (ML) classifier.
The textual dataset consists of documents that represent words,
sentences, or paragraphs of free text, and those are inherently un-
structured. Extracting meaningful features from the textual dataset
is essential to building text classification by the ML model. In this
step, textual data was converted from text into some numeric rep-
resentations to be understood by ML algorithms.

Initially, this research went through the standard steps for text
pre-processing. TF-IDF supported the feature extraction process
from the pre-processed text. This technique scores associated with
each term present in a given requirement. The TF-IDF term weight-
ing technique assigns a higher score to rare words and a lower
one to words occurring frequently across all requirements. After
cleaning the requirements strings, this technique was applied to
extract textual features to train the ML classifiers.

Train ML Classifiers. The TF-IDF was used to extract textual
features, which act as the input of ML algorithms of training clas-
sifiers. The experimental tasks involved four ML algorithms (i.e.,
BNB, KNN, SVM, and SGD). These algorithms were applied for
requirement classification to compare the effectiveness and perfor-
mance.

Requirement Classification. Each ML classifier will output
for a given requirement whether it belongs (or not) to a specific
category. For instance, to requirement classification according to
the category “Maintainability” (M), the classifier should return the
list of requirements for which it received a positive answer.

Also, the other documents will be classified accordingly. The
combination of textual feature extractionmethods and fourmachine
learning algorithms have been applied in this software requirements
classification study. The textual dataset was converted into vector
representations to be fed as input in ML algorithms.

3 RESULTS AND DISCUSSION
The experimental study utilized a requirement corpus, and the
evaluated results are presented in this section. Precision, recall,
and the F1-score were measured to evaluate how well the model
learned to classify software requirements. The labeled data was used
for training, and unlabeled text strings were used for testing. The
experimental classification results of the NFR dataset for different
machine-learning algorithms are shown in Table II and Table III.

3.1 Dataset
The PROMISE software requirement dataset was used for the exper-
imental tasks involved in this study [1]. This dataset was chosen to
facilitate the replication of this study by independent researchers.
Additionally, this dataset is widely used for other studies related to
software requirement classification. The PROMISE dataset contains
a set of labeled FR and NFR. The dataset comprises about 625 re-
quirement sentences, with 255 functional and 370 non-functional re-
quirements. The NFR is labeled with eleven categories (i.e., availabil-
ity, legal, look and feel, maintainability, operational, performance,
scalability, security, usability, fault tolerance, and portability).

3.2 Experimental Environment
The first and second authors conducted the experimental tasks in an
environment featuring an Intel Core i7 processorwith 32GB of RAM,
operating on the Windows platform. The computing environment
was configured with Google Colab in a notebook setting, and we
employed a suite of essential packages, including Pandas, NumPy,
NLTK, scikit-learn (sklearn), and Matplotlib, for tasks such as data
loading, preprocessing, and results evaluation.

3.3 Results
The dataset, meticulously prepared for this study, was employed
for both training and testing to assess the classification accuracy of
machine learning classifiers. The results of the experimental NFR
classification, using TF-IDF feature extraction in conjunction with
four distinct ML algorithms (KNN, SVM, SGD SVM, and DTree),
are presented comprehensively in Table 1.

In Table 1, a comprehensive summary of the experimental out-
comes is provided. These outcomes were achieved through the
utilization of the TF-IDF feature extraction technique, considering



Using Machine Learning for NFR Classification: A Practical Study ISE ’23, September 26, 2023, Campo Grande-MS, Brazil

Table 1: Precision, Recall and F1-score results comparison.

TF-IDF Feature Extraction
word level n-gram Character level

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
KNN 0.70 0.60 0.64 0.74 0.52 0.57 0.71 0.63 0.64
SVM 0.68 0.58 0.62 0.45 0.24 0.27 0.72 0.57 0.62
SGD 0.70 0.68 0.68 0.77 0.65 0.67 0.77 0.68 0.69
DTree 0.25 0.23 0.21 0.14 0.11 0.09 0.13 0.19 0.16

character and word levels, as well as n-grams. The table showcases
the weighted average precision, recall, and F1-score for the classifi-
cation results, offering valuable insights into the performance of
the models.

Our analysis reveals that TF-IDF feature extraction at the char-
acter level outperforms the other methods considered. Specifically,
the highest precision, recall, and F1 score were achieved using the
SGD SVM technique across all feature extraction methods. Notably,
SGD SVM exhibited its superior performance when paired with TF-
IDF (character level), yielding precision, recall, and F1-score values
of 0.77, 0.68, and 0.69, respectively. Conversely, the combination
of DTree with TF-IDF (N-gram) demonstrated the least favorable
results, with precision, recall, and F1-score reaching only 0.14, 0.11,
and 0.09, respectively.

Table 2 provides a summary of the weighted average scores
across the various cases, with SGD once again emerging as the top-
performing method. Specifically, SGD achieved precision, recall, F1-
score, and accuracy scores of 0.74, 0.67, 0.68, and 0.83, respectively.
In contrast, KNN and SVM exhibited moderate performance, with
KNN attaining precision, recall, F1-score, and accuracy values of
0.72, 0.58, 0.62, and 0.78, respectively, while SVM reported 0.62,
0.47, 0.50, and 0.73 for precision, recall, F1-score, and accuracy,
respectively.

Table 2: Precision, Recall and F1-score average.

Precision Recall F1-Score Accuracy
KNN 0.72 0.58 0.62 0.78
SVM 0.62 0.47 0.50 0.73
SGD 0.74 0.67 0.68 0.83
DTree 0.17 0.18 0.15 0.48

Based on the empirical findings, it is evident that the combination
of SGD and TF-IDF feature extraction at the character level consis-
tently outperforms other machine learning and feature extraction
combinations in the context of NFR classification. It is important to
note that this study does not encompass FR classification, focusing
exclusively on the assessment of NFR classification.

4 THREATS AND LIMITATION
In this section, we discuss the limitations and potential threats to
the validity of our work, following the guidelines outlined in [7],
and elaborate on how these threats were partially mitigated.

Limitations refer to issues that our approach cannot currently
address. We used the PROMISE dataset, which came pre-labeled
with FR and NFR classifications. The correctness of such labeling

cannot be guaranteed, and any inaccuracies could potentially affect
the outcomes of this study.

Construct Validity focuses on whether theoretical constructs
are accurately interpreted and measured. One threat to construct
validity in this study concerns the correct classification of sentences
used in our experiments. To ensure consistent and accurate classi-
fication of various NFR types, we adopted the definitions of NFR
types as outlined in the ISO 25010 standard [5].

Internal Validity is concerned with the study’s design and
whether results logically follow from the data. A potential threat to
internal validity in our study is the risk of machine learning over-
fitting during testing [10]. To mitigate this risk, we implemented 5-
fold cross-validation in our experiments, enhancing the robustness
of our results.

External Validity pertains to the extent to which our findings
can be generalized to other settings. A specific threat here relates
to the absence of certain NFR types in the experimental dataset. To
improve external validity, we plan to conduct a large-scale empirical
study in the future, expanding the scope of NFR types considered.

Reliability concerns whether the study would yield consistent
results if replicated by other researchers. In this study, we assume
that employing the TF-IDF technique for feature extraction is the
optimal choice for our purposes. However, we cannot guarantee
that alternative techniques, such as Bag of Words (BoW) or Chi-
Squared, would yield superior results. This remains an avenue for
further exploration in future research endeavors.

5 FINAL REMARKS
This study presents an automated approach for the classification
of Non-Functional Requirements (NFR) using machine learning
techniques. We conducted experiments using the well-established
PROMISE NFR dataset, which categorizes requirements into dis-
tinct categories. Following feature extraction through the TF-IDF
technique, we employed four machine learning classifier algo-
rithms—BNB, KNN, SVM, and SGD—to classify requirements into
predefined categories.

Among the classification algorithms, SGD demonstrated supe-
rior performance compared to the others considered in this study.
This particular machine learning classifier achieved notable average
precision, recall, F1-score, and accuracy values of 0.74, 0.67, 0.68,
and 0.83, respectively. In contrast, the decision tree algorithm exhib-
ited the least favorable results, reporting precision, recall, F1-score,
and accuracy scores of 0.17, 0.18, 0.15, and 0.48, respectively. How-
ever, SVM and KNN attained moderate scores, surpassing DTree but
falling short of the SGDmethod. Furthermore, the TF-IDF feature ex-
traction technique at the character level consistently demonstrated



ISE ’23, September 26, 2023, Campo Grande-MS, Brazil Souza et al.

higher average scores. This empirical investigation highlights the
effectiveness of TF-IDF paired with the SGD algorithm for achieving
optimal results in NFR classification.

Looking ahead, this paper’s future research direction encom-
passes the incorporation of additional classification algorithms,
such as Multinomial Naive Bayes (MNB), Gaussian Naive Bayes
(GNB), and Bernoulli Naive Bayes (BNB), as well as the explo-
ration of alternative feature selection techniques like "Bag of Words
(BoW)" and "Chi-Squared". Additionally, replicating these experi-
mental tasks in a real-world setting holds the potential to validate
the practical utility of our approach in the context of NFR classifi-
cation.

REFERENCES
[1] G Boetticher. 2007. The PROMISE repository of empirical software engineering

data. http://promisedata. org/repository (2007).
[2] Andrea Bommert, Xudong Sun, Bernd Bischl, Jörg Rahnenführer, andMichel Lang.

2020. Benchmark for filter methods for feature selection in high-dimensional
classification data. Computational Statistics & Data Analysis 143 (2020), 106839.

[3] Jane Cleland-Huang, Raffaella Settimi, Xuchang Zou, and Peter Solc. 2006. The
detection and classification of non-functional requirements with application to
early aspects. In 14th IEEE International Requirements Engineering Conference
(RE’06). IEEE, 39–48.

[4] Ishrar Hussain, Leila Kosseim, and Olga Ormandjieva. 2008. Using linguistic
knowledge to classify non-functional requirements in SRS documents. In Inter-
national Conference on Application of Natural Language to Information Systems.
Springer, 287–298.

[5] ISO Iso. 2011. Iec25010: 2011 systems and software engineering–systems and
software quality requirements and evaluation (square)–system and software
quality models. International Organization for Standardization 34, 2910 (2011),
208.

[6] Raul Navarro-Almanza, Reyes Juarez-Ramirez, and Guillermo Licea. 2017. To-
wards supporting software engineering using deep learning: A case of software
requirements classification. In 2017 5th International Conference in Software Engi-
neering Research and Innovation (CONISOFT). IEEE, 116–120.

[7] Forrest Shull, Janice Singer, and Dag IK Sjøberg. 2007. Guide to advanced empirical
software engineering. Springer.

[8] John Slankas and Laurie Williams. 2013. Automated extraction of non-functional
requirements in available documentation. In 2013 1st International workshop on
natural language analysis in software engineering (NaturaLiSE). IEEE, 9–16.

[9] Bing Xue, Mengjie Zhang, Will N Browne, and Xin Yao. 2015. A survey on
evolutionary computation approaches to feature selection. IEEE Transactions on
Evolutionary Computation 20, 4 (2015), 606–626.

[10] Hui Yang and Peng Liang. 2015. Identification and Classification of Requirements
from App User Reviews.. In SEKE. 7–12.


	Abstract
	1 Introduction
	2 Study Configuration
	3 Results and Discussion
	3.1 Dataset
	3.2 Experimental Environment
	3.3 Results

	4 Threats and Limitation
	5 Final Remarks
	References

