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Abstract.

Echo State Networks (ESNs) are recurrent neural networks that map an input signal to a high-dimensional dynamical
system, called reservoir, and possess adaptive output weights. The output weights are trained such that the ESN’s
output signal fits the desired target signal. Classical reservoirs are sparse and randomly connected networks. In this
article, we investigate the effect of different network topologies on the performance of ESNs. Specifically, we use two
types of networks to construct clustered reservoirs of ESN: the clustered Erdös–Rényi and the clustered Barabási-Albert
network model. Moreover, we compare the performance of these clustered ESNs (CESNs) and classical ESNs with the
random reservoir by employing them to two different tasks: frequency filtering and the reconstruction of chaotic signals.
By using a clustered topology, one can achieve a significant increase in the ESN’s performance.

CCS Concepts: • Computing methodologies → Neural networks; • Mathematics of computing → Graph
theory.

Keywords: clustered networks, complex networks, echo state networks, machine learning, neural networks

1. INTRODUCTION

The Echo State Networks(ESNs) proposed in [Jaeger 2001] are a type of Recurrent Neural Networks
(RNNs), where the ESN contains one input layer, one hidden layer, and one output layer. The ESN’s
hidden layer is named reservoir, and it is generally a random network of artificial neurons.

ESN’s are a commonly used possibility to perform reservoir computing, which is a framework based
on dynamical systems. Reservoir computing is realized by a fixed and non-linear system, that maps
inputs to a high-dimensional space [Tanaka et al. 2019]. This system also has a readout function,
mapping the states in the reservoir to an output signal. [Tanaka et al. 2019]. The main advantage of
this model is that the training part is fast because only the output connections are trained. Another
advantage is the flexibility to choose the network in the reservoir.

Reservoir computing has an important role in machine learning study because it can be used to
solve several applications, such as the classification of spoken digits [Appeltant et al. 2011], and the
prediction of stock market prices [Lin et al. 2008]. The publication [Wen et al. 2015] demonstrates
that ESNs combined with Convolutional Neural Networks can be used to recognize facial expressions.
A recent study [Lu et al. 2017] has shown that ESNs can emulate chaotic systems, such as the Rössler
system and the Lorenz system.

Some methods also used a clustered network for the reservoir, for example, in [Deng and Zhang 2007],
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in an attempt to make the model closer to a biological brain. Some methods generate the reservoir
network based on training data, as in [Li et al. 2015]. Despite the fact the methods to generate the
clustered network are different, it was shown that the division of the reservoir in communities increases
the accuracy.

These prior works show that using a clustered network in the reservoir can be better than using a
random network. Whereas these prior works applied ESNs to find patterns in time-series, this work
applies ESNs for observer problems [Lu et al. 2017] and signal separation tasks. Furthermore, two ad-
ditional methods to generate the clusters are presented. Also, the role of the CESN’s hyperparameters
for the performance is studied.

The first investigated method consists of splitting the network into a given number of smaller
networks, called clusters. Each of these clusters will is a random network, and the connections between
the clusters also form a random network [Erdös and Renyi 1961]. The second method splits the network
into smaller networks too, but each of these small networks has a scale-free distribution of the degree
[Barabási and Albert 1999]. Furthermore, the connections between different clusters will also have a
scale-free distribution.

2. METHODS

In this section, we describe the Clustered ESN (CESN) to be studied in this work. Firstly, we review
the classical ESN. Then, we present the methods for constructing clustered reservoirs.

2.1 Echo State Networks

The ESNs contains a reservoir with N nodes (neurons on the hidden layer), K input entries, and L
output entries. The state of the reservoir is ruled by the following equation:

x(t+ 1) = αx(t) + (1− α)f(Ax(t) +W inu(t) + γ1) (1)

where x(t) is the N-dimensional reservoir state at a given time t, which contains a memory that is
set by the variable α. While the matrix A is the weighted adjacency matrix of the reservoir, indicating
which nodes are connected inside the reservoir, the matrixW in contains the weight of the input nodes
connected to each of the nodes inside the reservoir. Worth mentioning that A has dimensions N ×N ,
and the W in has dimensions K ×N . The variable f represents the activation function, which usually
is the hyperbolic tangent. The equation also has a bias parameter, ruled by γ1, where gamma is a
constant and 1 is a vector filled with ones.

The output of a reservoir network has length an L, and it can be express by the following equation:

s(t) = W outx(t) + c, (2)

where W out is the weighted output matrix with dimensions N × L, and c is a correction vector.
As mentioned earlier, the matrices A and Win are generated initially with random values, and these
values do not change over time.

In the training phase, the Echo State Network receives as input the sequence u(1), u(2), . . . , u(nmax),
and then it will generate the reservoir internal states, (x(1), x(2), . . . , x(nmax). The key part is to find
the elements W out and c, such that the error rate is minimized for the Equation 2. To find a good
estimator ŝ, the matrix W out is calculated using linear regression, as stated in [Lu et al. 2017]. At the
first, some pre-calculations are needed. We need to calculate the average of the states of the reservoir,
(x(1), x(2), ..., x(nmax))), and the average of the expected outputs, (s(1), s(2), ..., s(nmax))), calculated
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by the following equations:

x̄ =
1

nmax

nmax∑
t=1

x(t), (3)

s̄ =
1

nmax

nmax∑
t=1

s(t), (4)

After that, the estimator (ŝ), can be found by calculating the variables W out e c:

W out = δSδXT (δXδXT + βI)−1, (5)

c = −[W outx̄− s̄], (6)

where the matrix I indicates the identity matrix with dimensions N ×N , δX indicates the concate-
nation of the states x(t) in a matrix, where the i-th column contains the value for x(t) − x̄. The
same happens for the variable δS, but instead we concatenate the states s(t), where the i-th column
contains the value s(t)− s̄. Using the equations stated above, we can find a good estimator ŝ that best
fits based on the input data. Worth mentioning that changing the reservoir matrix does not change
anything in the training phase.

2.2 Clustered Networks

Two network models are proposed here to create the CESNs. The first model generates a network with
clusters which are random networks themselves, and the connections between nodes of two different
clusters are also chosen randomly. The second model is a clustered network, such that each cluster
is a scale-free network, and the connections between nodes of different clusters also form a free scale
network.

(a) Clustered Erdös-Rényi Network (b) Clustered Barabási–Albert Network

Fig. 1. The image shows how is the final adjacency matrix for either the clustered networks.

Beforehand, some variables need to be defined. Let N , 〈k〉 and C, be the number of nodes in
the reservoir network, the mean degree of the network, and the number of clusters of the network
respectively. The mixture level means the density level of the connections between the nodes in the
network. The variable Pin defines this mixture level of the connections inside the clusters, where Pin

= 0 mean no connections between nodes of the same clusters, and Pin = 1 means that all nodes of the
same cluster will be connected. The variable Pout defines the density level of the connections between
nodes of different clusters, where Pout follows the same rule as Pin, but rather for connections between
nodes from different clusters.

Note that Pin + Pout = 1, otherwise the mean degree of the network would be greater than D.
Moreover, each cluster inside the reservoir network has the same number of nodes, which is N/C. For
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the case where Pin = 1 and Pout = 0, a single connection is made between two consecutive nodes from
different clusters to make the network connected.

2.2.1 Erdös-Rényi Clustered Network. To build such clustered network, first let split the mean
degree 〈k〉 into 〈kin〉 and 〈kout〉, such that 〈kin〉 is the mean degree counting only connections between
two nodes of the same cluster, and 〈kout〉 is the mean degree counting only connections between two
nodes of different clusters:

〈kin〉 = 〈k〉Pin, (7)
〈kout〉 = 〈k〉Pout. (8)

After that, a total of C random networks are created with mean degree equals to 〈kin〉. To create
these networks, a total of (N/C)× 〈kin〉 pairs (u, v) are chosen randomly, meaning that there will be
a connection between the nodes u and v, such that u and v belong to the same cluster. To create the
connections between different cluster, just repeat the process by choosing a total of (N/C) × 〈kout〉
pairs (u, v) randomly, such that u and v does not belong to the same cluster. The figure 1.a shows
how looks like the adjacency matrix of a clustered network with C = 5 and Pin = 0.9.

2.2.2 Barabási Albert Clustered Network. The Barabási-Albert [Barabási and Albert 1999] model
implies that the degree distribution of the nodes follows a power law. This type of network is also
known as Scale-free networks. It means that the more connections a node has attached to it, the higher
is the probability to make new connections. The classical model of this network assumes that the
connections between nodes are undirected. To build a scale-free network with directed connections,
the algorithm used is the one proposed by [Bollobas et al. 2003]. This algorithm guarantees that the
degree distribution of the incoming edges and outcoming edges follows a power law.

Let C, Pin and Pout the parameters defined the same as above. To build the CESN, the first step
is to C scale-free networks, such that each of these scale-free networks has a mean degree equals
to 〈kin/C〉. After that, the connections between the nodes of different clusters need to be created.
The same algorithm is repeated, but now the clusters are treated as big nodes. i.e., at every step,
a connection is made between two nodes, based on the degree distribution following the algorithm
proposed by [Bollobas et al. 2003].

The mean degree split calculation will be the same for the scale-free network, but a new variable
comes in, which is the number of initial vertices in the network. The rest of the algorithm will be the
same as stated above, but instead of choosing the nodes randomly, they will be chosen according to
the degree distribution [Barabási and Albert 1999]. The figure 1.b shows how looks like the adjacency
matrix of a scale-free clustered network with C = 5 and Pin = 0.9.

2.3 Tasks

For each task, the dataset contains a training set and a testing set, and each of these sets contains
an input signal and a test signal. The only change is on the Observer Problem, where the initial
condition of the chaotic system is different for training and testing. The parameters to generate the
signals are the same for training and testing. What makes the data different is due to the randomness
the algorithms have to build the data, as it can be observed in Figure 2.

Two different tasks are employed to evaluate the performance of the Clustered ESNs (CESNs): the
estimation of an unobserved variable of the chaotic system, specifically, Rössler system at chaotic
regime, and a frequency filtering task. Both tasks are explained in detail below.

2.3.1 Chaotic System Observer Problem. ESNs can be applied to observer problems, i.e., the
estimation of an unobserved variable of a dynamical system based on measurements of an observed
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Fig. 2. The image shows one of the training and testing frequency filtering datasets.

variable. One example system used by the authors is the chaotic Rössler system [Lu et al. 2017],
which is defined by the following differential equations:

dx

dt
= −y − z,

dy

dt
= x+ ay,

dz

dt
= b+ z(x− c).

(9)

In this paper, we will apply the CESNs to the observer problems using the Rössler system. In the
numerical studies described in the next section, the x-component of the Rössler system is used as the
observed variable, i.e., as the input signal for the CESN. The y-component is used as the target signal,
which should be approximated by the CESN’s output.

To obtain the trajectory of the Rössler system, the system is solved using the 4th order Runge-Kutta
method. The constants a, b and c are set to 0.5, 2.0 and 4.0, respectively. The initial conditions for
the training, as well as for testing, are chosen randomly from a uniform distribution on [0, 1]3.

2.3.2 Frequency Filtering. For the second task which we employ for our comparison, we use a sum
of multiple sine signals with different frequencies and phase shifts and variable amplitudes determined
by random envelope functions as the CESN’s input signal. One of these sine signals is the target
signal, i.e., the CESN’s tasks are to let a certain frequency pass and filter out the others.

3. EXPERIMENTAL RESULTS

The main goal is to compare the performance between the ESNs and the Clustered ESNs (CESNs).
To better evaluate the performance of both methods, a numerical analysis will be made to find the
best set of parameters for the networks that lead to the best performance, and then compare the
results. While evaluating a particular variable, some default values will be set to the other parameters
as stated in the table I. To measure the performance it will be used the Normalized Root Mean
Square Error (NRMSE). For each set of parameters, the ESNs and the CESNs were submitted to
100 executions to generate the results, and then the overall performance will be the average of the
executions.

The first task is to give as input to the ESNs, the x component of the Rössler System, and get as
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Table I. This table lists the ESN and CESN variable’s default values.
Variable Default value

Nodes (N) 512
Mean Degree (D) 20

Activation function (f) tanh(x)
∆T 0.01
α 0.22

Bias (γ) 0.1
Learning rate (β) 2 × 10−7

output the components y and z. The ESNs can solve this problem with high precision as shown in
[Lu et al. 2017], but the goal here is to compare the performance of the ESNs with a random network
in the reservoir and CESNs.

In the observer problem with Rössler System, the train steps and test steps were set to 20k and
10k respectively, since the convergence is fast in this case. To find the optimal number of clusters,
the mixture level was fixed (Pin = 0.75, therefore Pout = 0.25). Moreover, for the Barabási clustered
network the number of initial vertices was set to 1. Note that the image 3 shows only the results for
the component y. The results for the component z were omitted since they are quite similar.

The first parameter to optimize is the number of clusters (C). As the Figure 3.a shows the value
of this parameter is different for each of the CESNs. This experiment demonstrates that a better
performance can be achieved once the optimal number of clusters is found. After fixing the number
of clusters for each CESN, a new experiment is performed to find the optimal values for the mixture
level (Pin, Pout).

As the image 3.b shows, the CESNs can achieve better results compared to the ESN. Even though
this is an easy task for the ESNs in general, with the correct set of parameters, the CESNs can achieve
better results compared to the random networks in the reservoir. Worth mentioning that the CESN
with Barabási-Albert clusters has a slight advantage over the other two methods.

The second task to be tested is the frequency filtering. At first, a signal that is a sum of two other
signals with frequencies equals 1 and 2 will be used. The input data and the training data will be
generated as explained in section 2.3.2. The idea is the same as in the previous experiment, which is
to find the set of parameters that yields the best performance.

(a) Finding the optimal number of clusters. (b) Finding the optimal value for Pin.

Fig. 3. In the Image (a), the performance of the random ESN is constant as the number of cluster changes, and the
performance of the CESNs varies depending on the number of clusters. The CESNs’ performance increases once the
optimal Pin is found.

The next task to test the methods is the frequency filtering. To compare the performance of the
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(a) Finding the optimal number of clusters. (b) Finding the optimal value for Pin.

(c) Finding the optimal number of nodes. (d) Performance for different number of frequencies.

Fig. 4. The four figures show the performance of the CESNs and the ESN over different parameter evaluations.

methods, the CESNs parameters need to be optimized. Comparing the results in figure 4.a, the
CESNs also perform better than the random networks in the reservoir by only changing the number
of clusters. For both CESNs methods, the number of clusters does have an impact on the performance.

The figure 4.b shows the performance of the clustered networks as the mixture level changes. The
CESNs seem to improve the performance as the Pin increases, which means that the networks with
a high number of connections inside the clusters and sparse connections between nodes of different
clusters results in a better performance. Using the optimal values for the parameters C and Pin, the
CESNs can achieve an expressive gain in performance over the ESNs. Using CESNs, one can achieve
a (30 to 40) percent smaller NRMSE compared to the random ESN.

Finding the optimal value for the parameters C and the Pin yields an increase in the performance as
shown above. While some parameter optimizations are important in the overall performance, others
not. As the initial number of nodes in the Barabási-Albert networks. Figure 4.c shows that NRMSE
does not decrease as the initial number of nodes changes.

So far, the ESNs have been submitted to only a signal with two frequencies. To make the task
harder, a test was made to check whether the number of frequencies reflects in the performance of the
ESNs. The ESNs will be submitted to signals with more than two frequencies. That is, the input will
be the sum of k signals, where the frequency of the signal si is i, for i = 1, ..., k. For each signal, the
parameters of the CESNs will be optimized, but tested in a smaller set of values for the parameters
C ∈ [1, 2, 4, 8, 16, 32, 64, 128] and Pin ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}.

The performance of the methods follow the same trend, as shown in figure 4.d, oscillating in some
cases. Since the set of parameters was smaller, there might be some room for improvement. Note
the methods follow the same trend, and there is an advantage for the CESNs over the ESN in all the
cases. Moreover, the performance of the CESNs is more stable with smaller error bars than the ESN.
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It is interesting that the tasks tested here have different characteristics, and the ESNs and its
extensions can give good results in both of them. In all the experiments, the CESNs can outperform
the ESNs after the parameter optimization phase.

4. DISCUSSION

ESNs are powerful tools due to their simplicity, the fast training process, and the flexibility to choose
the network for the reservoir. The network can be chosen such that it is suitable for the according
to application. ESNs with clustered networks as reservoirs (CESNs) can deliver much better results
than classical ESNs for observer problems and frequency filtering tasks.

The key to achieving good performance for each task is the optimization of the CESN’s hyperpa-
rameters. Comparing the presented CESN methods individually, their optimized performances in the
experiments are equal.

These improved performances of CESNs are probably due to the selective nature of the clusters in
the reservoir, where different clusters are responsible to capture different signal properties. As future
works, a theoretical analysis will be conducted to get a better understanding of CESNs. Specifically,
we will investigate the collective dynamics, like synchronization, among neurons in the reservoir related
to the learning results.
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