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Abstract. Sentiment analysis on social media data can be a challenging task, among other reasons, because labeled
data for training is not always available. Transfer learning approaches address this problem by leveraging a labeled
source domain to obtain a model for a target domain that is different but related to the source domain. However, the
question that arises is how to choose proper source data for training the target classifier, which can be made considering
the similarity between source and target data using distance metrics. This article investigates the relation between these
distance metrics and the classifiers’ performance. For this purpose, we propose to evaluate four metrics combined with
distinct dataset representations. Computational experiments, conducted in the Twitter sentiment analysis scenario,
showed that the cosine similarity metric combined with bag-of-words normalized with term frequency-inverse document
frequency presented the best results in terms of predictive power, outperforming even the classifiers trained with the
target dataset in many cases.

CCS Concepts: • Computing methodologies → Transfer learning.
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1. INTRODUCTION

Sentiment analysis is a suitcase research problem [Cambria et al. 2017] that involves many Natural
Language Processing (NLP) tasks, including the polarity classification of opinions, sentiments, evalu-
ations, appraisals, attitudes, and emotions towards entities and their attributes expressed in written
text [Liu 2012]. With the explosion of social media networks, especially Twitter, people are free to
express themselves on any topic using a limited number of characters in short messages called tweets.
In this scenario, applying sentiment analysis is particularly challenging considering the characteristics
of these short informal messages, such as the incorrect use of grammar, the presence of misspelled
words, and lack of context [Martínez-Cámara et al. 2014]. Regarding the polarity detection problem,
which aims at identifying whether a text conveys a positive or a negative opinion, two main approaches
have been adopted in the literature: lexicon-based methods and machine learning strategies.

Lexicon-based methods rely on the prior polarity of words from existing dictionaries, or lexicons. On
the other hand, machine learning strategies, which are the focus of this study, extract characteristics
from labeled data in a given domain, called features, and train a model to predict the polarity of new
data. However, enough labeled data is not always available, either because the target domain is rare
or because manually labeling existent data requires much human effort. In that case, transfer learning
approaches emerge as a feasible solution by using labeled data from a different but related source
domain to train a classifier to the domain of interest, i.e., the target domain [Pan and Yang 2010].
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Nevertheless, choosing between all labeled datasets available from different source-related domains
remains a key challenge.

In the context of the challenging issue of choosing an appropriate source dataset, this article aims
at determining which metric from a set of distinct distance metrics can be used to identify the most
appropriate labeled dataset from a source domain to train a classifier via transfer learning. For this
purpose, we evaluate four different distance metrics to select a source dataset, combined with distinct
approaches for dataset representation.

The conducted computational experiments, conducted in the Twitter sentiment analysis scenario,
showed that the cosine similarity metric combined with bag-of-words normalized with term frequency-
inverse document frequency presented the best results, in terms of predictive power, outperforming
even the classifiers trained with the target dataset in many cases.

The remainder of this article is organized as follows. Section 2 brings some important concepts
used in the article, Section 3 shows examples of similar studies in the literature. Section 4 presents
the workflow of the experiments carried out in this study, Section 5 displays and evaluates the results
obtained with the experiments, and 6 discusses the conclusions and indicates new research directions.

2. BACKGROUND

In this section, we present some definitions for helping in the comprehension of this article.

Transfer learning: Transfer learning allows the domains, tasks, and distributions used in training
and testing to be different [Pan and Yang 2010]. Basically, it uses the source domain and a learning
task in this domain to improve the learning for a task in the target domain, using the knowledge
obtained in the source domain. It is grounded on the idea that appropriating from prior knowledge
and learning can be useful and save resources, avoiding starting from the scratch for every new problem
when labeled data is rare or not available. Recently, using transfer learning to solve natural language
tasks in the presence of limited data has become a very attractive field of research [Ruder 2019; Devlin
et al. 2019].

Word embeddings: Word embeddings [Mikolov et al. 2013] is a technique to represent words
in low-dimensional real-valued vectors. Such vectors are learned from large corpora of textual data
using neural network techniques aimed at capturing the word’s meaning. In that case, words that are
frequently used in the same context are represented in the same space.

Cosine similarity: Given two vectors u = (u1, u2, ..., un) and v = (v1, v2, ..., vn) the cosine simi-
larity (CS) between them is defined as follows:

CS =
u · v
‖u‖.‖v‖

(1)

where u · v represents the inner product between u and v, and ‖u‖ and ‖v‖ represents their norms.

Euclidean distance: The Euclidean Distance (ED) between two vectors u = (u1, u2, ..., un) and
v = (v1, v2, ..., vn) is defined as follows:

ED =

√√√√ n∑
i=1

(ui − vi)2 (2)

Jaccard distance: The Jaccard Distance (JD) between two sets A and B is defined as the com-
plement of the ratio between their intersection size and their union size. Then:

JD = 1− |A
⋂

B|
|A
⋃

B|
(3)
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Relaxed word moving distance [Kusner et al. 2015]: Consider two datasets Di and Dj whose
word embeddings representations have n and m elements, respectively. The Relaxed Word Moving
Distance (RWMD) can be defined as follows:

RWMD = max

(
n∑

a=1

fia × ED∗
ia,

m∑
b=1

fjb × ED∗
jb

)
(4)

where fia represents the word embedding relative frequency for the a-th element of Di and ED∗
ia is

the Euclidean distance between the a-th element and its closest word embedding in Dj . The terms
fjb and ED∗

jb are analogous. Thereby, RWMD computes the greatest cost of moving from one dataset
to another, weighted by the relative frequencies of the word embeddings, considering both of them as
possible origins.

3. RELATED WORK

Distinct studies have been presented in the literature aiming at determining an appropriate distance
metric to select data in a given domain to train a classifier to a different target domain via transfer
learning [Van Asch and Daelemans 2010; Plank and van Noord 2011; Remus 2012; Ruder and Plank
2017; Santos et al. 2019].

[Van Asch and Daelemans 2010] investigated the relationship between the difference of source and
target datasets and the accuracy of Part-of-Speech (PoS) tagger. For the difference calculation, the
correlations between six distance metrics and the accuracy of the POS tagger were used, and they
showed that Rényi divergence had the best performance in predicting the accuracy of the tagger. In
[Plank and van Noord 2011], they studied six metrics and two types of feature representations and
their performance in helping select data for transfer learning in parsing tasks in English and Dutch.
They found that the variational metric using a topic model representation was the best technique.

Differently, when target data is labeled, [Remus 2012] proposed an approach to select instances from
the source dataset based on two metrics: domain similarity and domain complexity. These selected
instances and the target dataset were used to compose a new source dataset. Domain similarity was
considered based on the idea that selecting the most similar instances to the target dataset could
aggregate more information to the trained model. In its turn, the difference between the domain
complexities of source and target datasets were used to calculate the reduction to be applied in the
original source dataset. The idea behind this was that the more different their complexities are, the
less the source data would be useful to compose the new source dataset.

Recently, [Ruder and Plank 2017] proposed an approach to learn data selection measures using
Bayesian Optimization for three tasks: sentiment analysis, POS tagging, and parsing. For that
purpose, they used six distance metrics as features to learn the new measure, considering three types
of dataset representations. Furthermore, they took into consideration that diversity could improve
the quality of the training model. Thus, for each training instance, they calculated its diversity,
believing that some of them are well suited for knowledge acquisition. The results achieved by them
outperformed the existing distance metrics.

[Santos et al. 2019] evaluated three distance metrics on sentiment analysis in the domain of the 2018
Brazilian Presidential Elections using social media data, like tweets, in Portuguese. These metrics
were used for datasets selection with the purpose to merge them, and they showed that choosing
similar datasets helps in achieving better results. Additionally, they showed that selecting dissimilar
datasets worsens the results of the classifiers.

This article differs from previous studies because it investigates, in the scenario of sentiment analysis
of tweets, the relationship between distance metrics and the performance of the classifiers trained with
the datasets selected by these metrics when applied to the target datasets. Also, in order to conduct
our experiments, we have used a large set of 22 Twitter datasets in English.
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Dataset Abbreviation Positive % positive Negative % negative Total tweets
irony iro 22 34% 43 66% 65
sarcasm sar 33 46% 38 54% 71
ntua ntu 159 57% 119 43% 278
SemEval15-Task11 S15 47 15% 274 85% 321
sentiment140 stm 182 51% 177 49% 359
person per 312 71% 127 29% 439
hobbit hob 354 68% 168 32% 522
iphone iph 371 70% 161 30% 532
movie mov 460 82% 101 18% 561
sanders san 570 47% 654 53% 1224
Narr-KDML-2012 Nar 739 60% 488 40% 1227
archeage arc 724 42% 994 58% 1718
SemEval18 S18 865 47% 994 53% 1859
debate08 deb 710 37% 1196 63% 1906
HCR HCR 539 28% 1369 72% 1908
STS-gold STS 632 31% 1402 69% 2034
SentiStrength SSt 1340 59% 949 41% 2289
Target-dependent Tar 1734 50% 1733 50% 3467
VADER VAD 2897 69% 1299 31% 4196
SemEval13 S13 3183 73% 1195 27% 4378
SemEval17-test S17 2375 37% 3972 63% 6347
SemEval16 S16 8893 73% 3323 27% 12216

Table I. Datasets characteristics.

4. METHODOLOGY

To conduct the investigation proposed in this article, we used a set of 22 datasets1 of tweets [Carvalho
and Plastino 2020]. Table I presents some characteristics of these datasets, namely their abbreviation,
number and fraction of positive and negative tweets, and total number of tweets.

We adopted the following preprocessing steps. First, for each tweet in a given dataset, we replaced
URLs and user mentions by unique tokens. Then, all characters were lowercased, and the resulting
tweet was tokenized. Finally, we used a pretrained embedding model [Bravo-Marquez et al. 2016],
trained over ten million tweets from the Edinburgh Twitter corpus [Petrovic et al. 2010] using the
Skip-gram method, to generate a representation for each tweet by averaging the embedding values of
its tokens. Henceforth this representation is named as tweet embeddings. We adopted this pretrained
model regarding its good performance when compared to other models [Carvalho and Plastino 2020].

To determine the similarity between datasets, we measured the distance between them using the
metrics presented in Section 2, i.e., Euclidean distance, cosine similarity, Jaccard distance, and Relaxed
Word Moving Distance. For the Euclidean distance, we used two types of representation: dataset
embeddings as the average of all word embeddings of the dataset (ED1) and dataset embeddings as
the average of all tweet embeddings of the dataset (ED2). The cosine similarity was computed using
three forms of representation: bag-of-words (BoW) with term frequency-inverse document frequency
(TF-IDF) (CS1), dataset embeddings as the average of all word embeddings of the dataset (CS2),
and dataset embeddings as the average of all tweet embeddings of the dataset (CS3). For the Jaccard
distance (JD), one more preprocessing step was needed: the lemmatization of the tokens. Then, the
lemma sets were considered for the calculation. According to RWMD definition, all word embeddings
of the datasets were taken into account for its calculation.

We adopted Scikit Learn’s [Pedregosa et al. 2011] implementation of Logistic Regression to train
the classifiers. This algorithm was chosen by its good performance in sentiment analysis in Twitter
scenario [Carvalho and Plastino 2020]. Specifically, we used each dataset to generate a classification
model which was then applied to classify the instances of the other 21 datasets.

1Datasets are available at this GitHub repository: https://github.com/joncarv/air-datasets
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In the experimental evaluation, for each target dataset, we used classification accuracy and weighted
average F-measure (FAVG) to compare the results achieved by using the classifier trained with the
most similar dataset pointed by the metrics and the results achieved by performing a 10-fold cross-
validation when the target dataset is used to train the classifier itself.

Additionally, we compared the classification accuracy and FAVG results achieved when applying
the classifiers trained with all datasets, one by one, for each target dataset. When source and target
datasets were the same dataset, a 10-fold cross-validation was performed. This comparison intended
to verify if some dataset can be selected as source dataset independently of its distance to target
dataset with a low predictive loss.

5. EXPERIMENTAL RESULTS

To evaluate the effectiveness of the transfer learning approach, first, we performed a 10-fold cross-
validation to induce the logistic regression model for each dataset. Table II presents the results of
this evaluation in terms of accuracy and weighted F-measure (FAVG) (second and third columns,
respectively). Then, for each target dataset (presented in the rows), we conducted an experiment to
identify the most similar dataset to it by using one distance metric at a time, to train a classifier and
evaluate its predictive performance on the target dataset. Due to space constraints, we present only
the results related to the CS1 metric (fourth and fifth columns), which is the one that has achieved
the best overall results, as we shall see later. The sixth and seventh columns present the gain (in
%) when the most similar dataset is used in the classification instead of the target dataset itself, in
terms of accuracy and FAVG, respectively. The results that increased the performance are presented
in boldface type. Finally, the Average and St.dev. rows show the total average gain and its standard
deviation, respectively.

Dataset Accuracy10−FCV FAV G−10−FCV AccuracyCS1 FAV G−CS1 Accuracy ratio FAV G ratio
irony 0.66 0.53 0.68 0.68 102.27% 129.60%

sarcasm 0.56 0.43 0.58 0.53 102.34% 123.55%
ntua 0.81 0.80 0.86 0.86 106.24% 107.85%

SemEval15-Task11 0.85 0.79 0.70 0.74 82.47% 94.06%
sentiment140 0.81 0.81 0.69 0.67 84.81% 82.49%

person 0.71 0.59 0.73 0.71 102.88% 119.47%
hobbit 0.68 0.55 0.69 0.64 101.70% 115.85%
iphone 0.70 0.57 0.71 0.72 102.42% 126.42%
movie 0.82 0.74 0.81 0.78 98.70% 105.20%
sanders 0.76 0.75 0.61 0.57 80.47% 75.63%

Narr-KDML-2012 0.83 0.83 0.66 0.64 79.00% 77.47%
archeage 0.82 0.81 0.58 0.54 70.02% 66.54%

SemEval18 0.77 0.77 0.63 0.59 81.31% 77.35%
debate08 0.76 0.72 0.64 0.65 85.35% 89.81%
HCR 0.72 0.60 0.73 0.62 101.31% 103.84%

STS-gold 0.78 0.75 0.80 0.80 102.69% 107.34%
SentiStrength 0.75 0.74 0.71 0.67 94.35% 89.85%

Target-dependent 0.80 0.80 0.66 0.65 82.82% 81.64%
VADER 0.83 0.81 0.81 0.81 98.02% 100.06%

SemEval13 0.77 0.71 0.77 0.73 101.07% 102.83%
SemEval17-test 0.85 0.85 0.62 0.60 72.47% 71.09%
SemEval16 0.82 0.81 0.80 0.77 96.97% 95.57%

Average 92.26% 97.43%
St.dev. 11.30% 18.59%

Table II. Classifiers accuracies and FAV G according to target-dataset model and closest CS1 model and its respectives
ratios.

The experiment reported in Table II for CS1 was reproduced for all the distance metrics, and
averages and standard deviations presented in the last two rows were summarized in Table III. Table
III shows averages accuracy ratio and FAVG ratio on second and fourth columns, respectively, and
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Metric Accuracy ratio average Accuracy ratio st.dev. FAV G ratio average FAV G ratio st.dev.
ED1 92.72% 14.08% 95.35% 25.56%
ED2 87.45% 19.44% 89.76% 30.92%
CS1 92.26% 11.30% 97.43% 18.59%
CS2 90.70% 13.76% 93.72% 25.25%
CS3 89.62% 14.38% 92.26% 27.44%
JD 87.94% 15.49% 87.28% 18.76%

RWMD 87.82% 12.09% 88.18% 20.12%

Table III. Averages and standard deviations for accuracy and FAV G ratios according to metrics.

their standard deviations on third and fifth columns. The best results are presented in boldface type.
As we can observe, CS1 achieved the best overall results in terms of FAVG (97,43%) with the lowest
standard deviation value (18,59%), when used to select a source dataset to train a classifier. It means
that, on average, the source dataset selected with this metric achieved 97,43% of the FAVG values
obtained by classifiers trained with target datasets. In terms of accuracy, although CS1 achieved the
second-best overall result (92,26%), its average performance is comparable to the best overall result
achieved by ED1 (92,72%). This represents that CS1 achieved an average of 92,26% of the classification
accuracy values when selecting the source dataset in comparison with the classifier trained with the
target dataset itself. Nevertheless, CS1 presented the lowest standard deviation value (11,30%), which
may indicate that it has a more consistent behavior in selecting a dataset to train a good classifier
via transfer learning.

Next, in Tables IV and V, we present an “all versus all” comparison in terms of accuracy and FAVG,
respectively. Specifically, each cell in Tables IV and V shows the result achieved by applying the
classifier trained on some source dataset (represented in the columns) to classify the instances from
some target dataset (represented in the rows). The values in the main diagonal, i.e., the values in
cells related to the same dataset in both row and column, refer to the the 10-fold cross-validation
evaluation results on the dataset itself. For each target dataset, i.e., each row, the best results are
presented in boldface type, and the top five results are underlined. Furthermore, “Top 1” and “Top
5” rows show the number of times each source dataset achieved the best and the top five best results,
respectively. For each source dataset, the ratios between the results achieved by the classifier trained
on it and the classifier trained on the dataset itself were calculated, and the average of those ratios
are shown on “AVG % ratio” row.

iro sar ntu S15 stm per hob iph mov san Nar arc S18 deb HCR STS SSt Tar VAD S13 S17 S16
iro 0.66 0.66 0.37 0.66 0.55 0.34 0.37 0.34 0.34 0.71 0.51 0.62 0.68 0.66 0.66 0.72 0.62 0.69 0.54 0.55 0.68 0.68
sar 0.54 0.56 0.52 0.54 0.70 0.46 0.46 0.46 0.46 0.61 0.65 0.72 0.70 0.52 0.56 0.61 0.72 0.68 0.58 0.61 0.77 0.59
ntu 0.43 0.53 0.81 0.43 0.79 0.57 0.57 0.57 0.57 0.71 0.80 0.75 0.82 0.58 0.67 0.71 0.86 0.74 0.82 0.74 0.73 0.71
S15 0.85 0.84 0.25 0.85 0.63 0.15 0.15 0.15 0.15 0.81 0.42 0.66 0.70 0.84 0.84 0.84 0.49 0.60 0.32 0.37 0.64 0.45
stm 0.49 0.54 0.68 0.49 0.81 0.51 0.51 0.51 0.51 0.72 0.74 0.71 0.77 0.64 0.61 0.66 0.82 0.79 0.77 0.69 0.79 0.74
per 0.29 0.32 0.72 0.29 0.72 0.71 0.71 0.71 0.71 0.61 0.74 0.67 0.69 0.40 0.40 0.57 0.73 0.77 0.75 0.72 0.74 0.77
hob 0.32 0.38 0.71 0.32 0.67 0.68 0.68 0.68 0.68 0.45 0.70 0.65 0.52 0.36 0.37 0.39 0.70 0.69 0.72 0.69 0.70 0.69
iph 0.30 0.40 0.67 0.30 0.65 0.70 0.70 0.70 0.70 0.53 0.72 0.63 0.62 0.42 0.39 0.42 0.71 0.74 0.74 0.73 0.73 0.75
mov 0.18 0.23 0.81 0.18 0.75 0.82 0.82 0.82 0.82 0.43 0.78 0.70 0.58 0.24 0.32 0.38 0.76 0.78 0.84 0.81 0.76 0.83
san 0.53 0.56 0.50 0.53 0.69 0.47 0.47 0.47 0.47 0.76 0.63 0.62 0.75 0.68 0.59 0.65 0.65 0.69 0.61 0.62 0.75 0.65
Nar 0.40 0.49 0.77 0.40 0.81 0.60 0.60 0.60 0.60 0.73 0.83 0.76 0.82 0.55 0.62 0.66 0.85 0.84 0.82 0.80 0.84 0.81
arc 0.58 0.62 0.47 0.58 0.71 0.42 0.44 0.42 0.42 0.69 0.59 0.82 0.73 0.64 0.64 0.68 0.65 0.67 0.58 0.58 0.78 0.62
S18 0.53 0.58 0.55 0.53 0.69 0.47 0.47 0.47 0.47 0.69 0.67 0.69 0.77 0.61 0.61 0.64 0.72 0.75 0.63 0.66 0.75 0.71
deb 0.63 0.64 0.43 0.63 0.66 0.37 0.37 0.38 0.37 0.67 0.64 0.64 0.67 0.76 0.64 0.66 0.69 0.69 0.61 0.64 0.67 0.67
HCR 0.72 0.72 0.31 0.72 0.67 0.29 0.38 0.30 0.28 0.73 0.51 0.72 0.73 0.65 0.72 0.73 0.66 0.73 0.66 0.65 0.73 0.73
STS 0.69 0.70 0.56 0.69 0.74 0.31 0.31 0.31 0.31 0.79 0.63 0.67 0.80 0.73 0.73 0.78 0.71 0.60 0.56 0.54 0.67 0.51
SSt 0.41 0.46 0.67 0.41 0.72 0.59 0.59 0.59 0.59 0.62 0.72 0.65 0.71 0.51 0.53 0.60 0.75 0.72 0.71 0.71 0.71 0.71
Tar 0.50 0.51 0.53 0.50 0.65 0.50 0.51 0.50 0.50 0.62 0.66 0.64 0.69 0.53 0.54 0.60 0.70 0.80 0.68 0.66 0.76 0.72
VAD 0.31 0.40 0.76 0.31 0.73 0.69 0.70 0.69 0.69 0.59 0.79 0.65 0.66 0.47 0.50 0.56 0.81 0.79 0.83 0.80 0.73 0.80
S13 0.27 0.31 0.75 0.27 0.75 0.73 0.73 0.73 0.73 0.54 0.77 0.73 0.67 0.41 0.45 0.48 0.81 0.79 0.77 0.77 0.78 0.77
S17 0.63 0.64 0.40 0.63 0.69 0.37 0.41 0.38 0.37 0.77 0.57 0.78 0.81 0.70 0.67 0.73 0.69 0.85 0.62 0.66 0.85 0.80
S16 0.27 0.29 0.73 0.27 0.74 0.73 0.73 0.73 0.73 0.48 0.77 0.67 0.60 0.38 0.38 0.42 0.80 0.80 0.79 0.80 0.78 0.82
Top 1 1 0 0 1 0 0 0 0 0 1 0 1 3 1 0 1 5 3 3 0 1 2
Top 5 1 1 2 1 6 1 1 1 1 5 6 3 12 3 1 3 12 15 9 3 14 13

AVG % ratio 63% 68% 77% 63% 93% 69% 70% 69% 69% 85% 89% 90% 93% 73% 74% 81% 95% 97% 89% 88% 98% 93%

Table IV. Accuracies for models trained with columns datasets applied to target datasets (rows).

In terms of accuracy (Table IV), we can observe that datasets Target-dependent (Tar column) and
SemEval17-test (S17 column) achieved the best overall results regarding their use as source datasets
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iro sar ntu S15 stm per hob iph mov san Nar arc S18 deb HCR STS SSt Tar VAD S13 S17 S16
iro 0.53 0.53 0.28 0.53 0.57 0.17 0.23 0.17 0.17 0.65 0.51 0.56 0.63 0.59 0.55 0.65 0.63 0.68 0.54 0.56 0.64 0.68
sar 0.37 0.43 0.41 0.37 0.70 0.30 0.30 0.30 0.30 0.55 0.63 0.72 0.69 0.37 0.47 0.53 0.71 0.68 0.53 0.56 0.77 0.58
ntu 0.26 0.46 0.80 0.26 0.79 0.42 0.42 0.42 0.42 0.70 0.79 0.75 0.82 0.53 0.66 0.70 0.86 0.73 0.81 0.71 0.72 0.67
S15 0.79 0.80 0.24 0.79 0.68 0.04 0.04 0.04 0.04 0.78 0.48 0.71 0.74 0.79 0.80 0.79 0.55 0.66 0.35 0.42 0.70 0.51
stm 0.33 0.44 0.65 0.33 0.81 0.34 0.36 0.34 0.34 0.71 0.74 0.71 0.76 0.58 0.57 0.61 0.82 0.79 0.77 0.67 0.79 0.73
per 0.13 0.20 0.61 0.13 0.69 0.59 0.59 0.59 0.59 0.62 0.69 0.69 0.71 0.37 0.34 0.58 0.71 0.78 0.70 0.67 0.75 0.75
hob 0.16 0.29 0.64 0.16 0.67 0.55 0.55 0.55 0.55 0.41 0.67 0.66 0.52 0.23 0.26 0.33 0.70 0.68 0.66 0.64 0.69 0.65
iph 0.14 0.32 0.64 0.14 0.66 0.57 0.59 0.57 0.57 0.52 0.72 0.64 0.63 0.36 0.30 0.36 0.72 0.74 0.72 0.73 0.74 0.75
mov 0.05 0.15 0.76 0.05 0.76 0.74 0.74 0.74 0.74 0.46 0.77 0.73 0.62 0.18 0.31 0.39 0.77 0.79 0.81 0.78 0.78 0.80
san 0.37 0.44 0.37 0.37 0.69 0.30 0.33 0.30 0.30 0.75 0.61 0.57 0.75 0.67 0.49 0.60 0.64 0.69 0.57 0.59 0.75 0.63
Nar 0.23 0.43 0.75 0.23 0.81 0.46 0.45 0.45 0.45 0.73 0.83 0.76 0.83 0.50 0.61 0.64 0.85 0.84 0.81 0.78 0.83 0.80
arc 0.42 0.51 0.37 0.42 0.71 0.25 0.29 0.25 0.25 0.66 0.57 0.81 0.71 0.60 0.56 0.63 0.65 0.67 0.54 0.56 0.78 0.61
S18 0.37 0.48 0.47 0.37 0.69 0.30 0.31 0.30 0.30 0.65 0.66 0.68 0.77 0.53 0.53 0.59 0.72 0.75 0.59 0.64 0.75 0.70
deb 0.48 0.52 0.32 0.48 0.65 0.20 0.22 0.23 0.20 0.58 0.64 0.57 0.60 0.72 0.52 0.56 0.68 0.65 0.61 0.65 0.60 0.66
HCR 0.60 0.60 0.21 0.60 0.65 0.14 0.34 0.16 0.12 0.63 0.52 0.62 0.64 0.63 0.60 0.63 0.66 0.64 0.67 0.67 0.62 0.69
STS 0.56 0.62 0.55 0.56 0.75 0.15 0.15 0.15 0.15 0.77 0.64 0.68 0.80 0.66 0.70 0.75 0.72 0.61 0.55 0.52 0.68 0.49
SSt 0.24 0.36 0.61 0.24 0.72 0.43 0.45 0.43 0.43 0.59 0.71 0.65 0.70 0.44 0.47 0.57 0.74 0.73 0.67 0.68 0.71 0.69
Tar 0.33 0.37 0.43 0.33 0.64 0.33 0.36 0.34 0.33 0.56 0.65 0.63 0.67 0.42 0.43 0.54 0.70 0.80 0.65 0.64 0.75 0.71
VAD 0.15 0.33 0.71 0.15 0.74 0.57 0.59 0.57 0.56 0.59 0.78 0.66 0.67 0.43 0.48 0.55 0.81 0.79 0.81 0.78 0.74 0.79
S13 0.12 0.19 0.68 0.12 0.75 0.61 0.62 0.61 0.61 0.54 0.73 0.74 0.68 0.36 0.43 0.47 0.80 0.79 0.71 0.71 0.78 0.73
S17 0.48 0.52 0.26 0.48 0.70 0.20 0.29 0.22 0.20 0.75 0.55 0.77 0.80 0.66 0.57 0.69 0.69 0.85 0.60 0.65 0.85 0.80
S16 0.12 0.15 0.65 0.12 0.75 0.61 0.62 0.61 0.61 0.47 0.74 0.69 0.61 0.32 0.31 0.38 0.80 0.81 0.74 0.77 0.79 0.81
Top 1 0 0 0 0 0 0 0 0 0 1 0 1 2 1 1 0 7 4 1 0 1 3
Top 5 1 1 1 1 10 0 0 0 0 3 5 4 10 2 1 3 16 16 5 5 16 11

AVG % ratio 47% 59% 74% 47% 101% 54% 58% 55% 54% 89% 95% 98% 100% 70% 71% 81% 104% 105% 94% 94% 106% 99%

Table V. FAV G for models trained with columns datasets applied to target datasets (rows).

in the classification via transfer learning. While the dataset Target-dependent achieved the top five
best results in 15 out of the 22 datasets (97% of AVG % ratio), dataset SemEval17-test achieved the
top five best results in 14 out of the 22 datasets (98% of AVG % ratio). It is worth mentioning that
dataset SentiStrength (SSt column) achieved the best overall results in five out of the 22 datasets,
and the top five best results in 12 out of the 22 datasets (95% of AVG % ratio). These ratios indicate
the average gain of classification accuracy achieved by the source dataset in one column compared to
the classifier’s accuracy results trained with the target dataset itself. That means they had almost
the same accuracy of the target dataset classifier, which is quite remarkable.

Similarly, in terms of FAVG (Table V), we can notice that datasets SemEval17-test, Target-
dependent, and SentiStrength also achieved the best overall results. Their AVG % ratios for the
FAVG, respectively 106%, 105%, and 104%, outperformed the results obtained using the classifiers
trained with the target datasets themselves. Interestingly, these three datasets are among the ones
with the greatest number of tweets, which could indicate why they had such a good performance,
independently of the distance to the target dataset. Moreover, the variety in SemEval17-test and
Target-dependent subjects, respectively entities, products, and events, and celebrities, products, and
companies, may help to explain their performance.

6. CONCLUSIONS AND FUTURE WORK

This article intended to determine the most suitable distance metric between two datasets to choose
a labeled dataset to train a target classifier via transfer learning. For this purpose, we evaluated four
types of metrics in a large set of 22 Twitter datasets in English, achieving promising results.

In fact, one particular combination of distance metric and dataset representation reached a notorious
performance over the seven combinations employed: the cosine similarity applied to the datasets
represented with BoW and TF-IDF (CS1). This metric achieved the best results in term of FAVG and
the second best in terms of accuracy. In terms of accuracy, the best metric was ED1, although that
value was very close to CS1’s accuracy. Moreover, the CS1 metric presented the smallest standard
deviations, showing that it has a more consistent behavior in predicting the target dataset’s classes.
This result reveals that selecting CS1 as the distance metric to choose a training dataset tends to
reach good results in most of the cases.

Furthermore, the experiment conducted to verify if some dataset, independently of a distance metric,
could be selected to build a proper performance classifier revealed that some of the datasets reach
good generalization. SemEval17-test, SentiStrength, and Target-dependent had good results in terms
of both accuracy and FAVG. On average, they displayed a greater FAVG value than the classifier
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trained by the target dataset itself.

Future work could use more distance metrics or change the datasets representation form to establish
a closer relationship between a distance metric and performance metrics. Also, identifying which char-
acteristics of those datasets lead to the best performance is a promising path for future investigation.
It can start by extracting features from these datasets, like their dimension, or the vocabulary size.
In addition, identifying when to rely on the distance metric or when to adopt the dataset with the
best overall performance is a promising venue for future work.
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