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Abstract. Missing data is abundant in predictive tasks. Typical approaches assume that the missingness process
is ignorable or non-informative and handle missing data either by marginalization or heuristically. Yet, data is often
missing in a non-ignorable way, which introduces bias in prediction if not treated properly. In this paper, we develop
a new method to perform tractable predictive inference under non-ignorable missing data using probabilistic circuits
derived from Decision Tree Classifiers and a partially specified response model of missingness. We show empirically that
our method delivers less biased (probabilistic) classifications than approaches that assume missing at random and are
more determinate than similar existing overcautious approaches.

Categories and Subject Descriptors: I.2.6 [Artificial Intelligence]: Inference

Keywords: generative random forests, probabilistic circuits, non-ignorable missing data

1. INTRODUCTION

Probabilistic Circuits (PCs) are probabilistic graphical models that allow for linear time marginal infer-
ence [Choi et al. 2020; Liang and Van den Broeck 2019]. Sum-Product Networks [Poon and Domingos
2011], Probabilistic Sentential Decision Diagrams [Kisa et al. 2014] and Cutset Networks [Rahman
et al. 2014] are all special cases of Probabilistic Circuits. These models have obtained notable results
in several machine learning tasks due to their ability to compactly represent multidimensional distri-
butions and efficiently produce reliable inference [Peharz et al. 2020; Poon and Domingos 2011; Shao
et al. 2020; Shen et al. 2017; Shen et al. 2019; Zheng et al. 2018]. Generative Random Forests (GeFs)
are yet another special class of Probabilistic Circuits [Correia et al. 2020]. GeFs extend standard Ran-
dom Forests Classifiers and Regressors into full statistical models, and allow, among other queries,
to efficiently compute exact predictive inference under missing data by marginalizing non-observed
feature variables.

Handling missing data in classification in a principled and efficient data is an old and unsolved
problem in machine learning. The standard approaches are (multiple) imputation, which produces
one or more complete datasets, and marginalization of non-observed variables [Azur et al. 2011;
Khosravi et al. 2019]. Those approaches (and many others) are justified under the assumption that
non-observed data is missing at random (MAR), that states that the probability of the missing values
only depends on the observed values for a certain prediction [Rubin 1976]. While MAR is popular,
it is often violated in practical scenarios. For example, in personalized recommendation, users have
a strong bias towards rating items which they either strongly like or strongly dislike [Marlin et al.
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2011]. In such cases, called non-ignorable missing data or missing not at random (MNAR), imputing
or averaging over completions can lead to biased and (overly confident) inconsistent estimates.

An arguably more principled approach to coping with MNAR data is to suspend judgment (i.e.,
avoid making a prediction) whenever different completions of missing values could result in different
decisions (i.e., classification) according to the predictions of the model [Zaffalon 2002]. Following
that principle, we developed in previous work [Villanueva et al. 2021] a linear-time algorithm to
decide whether to suspend judgment in PCs derived from GeFs for classifications problems with non-
ignorable missing data. Our approach thus avoids making unwarranted and untested hypothesis (such
as MAR); however it produces too overcautious and often too non-informative predictions (e.g., the
set of all classes).

In this work, we improve on our previous approach to MNAR data by assuming the availability
of a partially specified response model in the form of probability intervals of the probability of ob-
serving/measuring a variable conditional on each possible value. Such intervals can often be obtained
from expert domain knowledge, or derived from specially curated training data (e.g., a small sample
survey with users of a recommendation system). We devise a polynomial-time procedure to perform
exact inference at prediction time in the presence of non-ignorable missing data with Decision Tree
Classifiers, assuming such a partially specified response model is available. The procedure can be
used to determine the robustness of classifications of a target variable to the (full) specification of
the response model. We compare our results with our previous more conservative approach described
in [Villanueva et al. 2021], by comparing accuracy of the classifications made by marginalizing non-
observed variables (i..e, the approach taken in [Correia et al. 2020]) according to the robustness of
each instance as judged by either method. Our experiments show that our new algorithm obtains
reliable conclusions often more accurate than criteria that ignores or marginalizes missing variables,
while being more informative than our previous approach.

2. GENERATIVE RANDOM FORESTS AND CREDAL PROBABILISTIC CIRCUITS

We start by establishing some notation and terminology. We denote random variables (RVs) by
upper-case letters (e.g., Xi, X), and their values by lower case (e.g., xi, x). Sets of random variables
are written in boldface (e.g., X), as well as their instantiations (e.g., x). In this work we assume
that RVs take on a finite number of values, denoted as val(X) for random variable X. We associate
every discrete random variable X with a set of indicator functions {[[X = x]] : x ∈ val(X)}, where the
notation [[X = x]] describes the indicator function that returns 1 if X takes value x and 0 otherwise. We
review Generative Random Forests and Credal Probabilistic Circuits, the backbones of our proposal.

2.1 Generative Random Forests and Probabilistic Circuits

A Probabilistic Circuit (PC) M over a set of categorical random variables X is a rooted weighted
acyclic directed graph whose leaves are associated with indicator functions [[Xi = xi]] of variables in
X, and the internal nodes are associated to either sum or product operations. The arcs i → j leaving
sum node i are associated with non-negative weights wij . We write Mi to denote the sub-PC rooted
at node i . The scope of a PC is the set of random variables associated with the indicator variables
at the leaves, and the scope of a node is the scope of the respective sub-PC. A PC represents a joint
distribution of X by PM(x) = M(x)/(

∑
x′ M(x′)). We assume here w.l.o.g. that PCs are normalized,

which implies that
∑

x′ M(x′) = 1. The value M(x), called the evaluation of the circuit at x, is defined
inductively in the size of the circuit as:

M(x) =


[[Xi = xi]](xi) if is a leaf node[[Xi = xi]] ,∑

j wijMj(x) if s a circuit rooted at a sum node i with children j ,∏
j Mj(x) if s a circuit rooted at a product node i with children j .
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Smoothness, a.k.a. completeness, states that the scopes of any two children of a sum node are identical.
Decomposability states that the scopes of any two children of a product node are disjoint. To ensure
that marginal inference is computed in linear time in the size of the circuit, it suffices that the circuit
satisfies smoothness and decomposability [Kisa et al. 2014; Poon and Domingos 2011]. For the rest of
this paper, we assume that PCs are smooth and decomposable. Determinism, a.k.a. selectivity, states
that each sum node has at most one child that evaluates to non-zero at any (complete) realization of
its scope. It ensures that maximum likelihood estimates for the weights can be obtained in closed-form
under complete data, and that a most probable realization is linear-time computable, a task otherwise
NP-hard [Peharz et al. 2014].

A Generative Random Forest is a mixture of selective, smooth and decomposable PCs, each of them
constructed from a Decision Tree as follows. Given a Decision Tree mapping features X to a target
variable Y , convert each decision node into a sum node and each leaf into a sub-PC whose support is
the partition induced by the corresponding path of the Decision Tree. The sub-PCs at the leaves can
be learned with any structure learning algorithm for PCs (e.g., Learn-SPN) or take simple forms such
as fully factorized distributions. Figure 1 illustrates this idea. We say that a PC M is strong selective
with respect to a variable Y , where scope(M) = {Y,X}, if for each sum node Mi, each pair of values
y′, y′′ of Y and and each realization x, at most one child of that node evaluates to a non-zero value.
This is akin to (and implied by) the concept of class-factorized GeFs [Correia et al. 2020].
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Fig. 1. A Decision Tree for classifying Y given X and Z (left) and its class-factorized Generative Decision Tree (right).

2.2 Credal Probabilistic Circuits

A Credal Probabilistic Circuit (CPC) is a set of complete, decomposable and normalized PCs which
all share the same network structure [Mauá et al. 2018]. We denote a CPC as {Mw : w ∈ C}, where C
is some space of weights (i.e., parametrizations). The set C is usually taken as the Cartesian product
of closed and convex sets of weights Ci, one for each sum node i in the network. Since the networks are
normalized, a CPC induces a credal set (CS) (i.e., a set of probability distributions) [Levi 1980]. An
example of a CPC is shown in Figure 2. We say that a CPC is (strong) selective if for any choice of
weights w the corresponding PC Mw is (strong) selective. Note that if some PC with positive weights
in a CPC is (strong) selective, then by definition, all other PCs must also be (strong) selective.

2.2.1 Credal Classification. A most common task that PCs perform is probabilistic classification,
that consists in obtaining the most probable class associated to a given observation using the model.
Since CPCs define more than one single model, they induce several possible maximizers [Troffaes 2007].
A very popular criteria for decision making with imprecise probability models is Credal Classification,
which is based on the principle of maximality [Zaffalon 2002]. Given a class variable Y , evidence
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Fig. 2. Selective Credal Probabilistic Circuit obtained by 0.1-contamination of a PC

Xe = e, and a CPC {Mw : w ∈ C} with scope Xe, Y , we say that an assignment y′ for Y credally
dominates another assignment y′′ if

δM(y
′, y′′) = min

w∈C
[Mw(y′, e)− Mw(y′′, e)] > 0 . (1)

A maximal set consists of classes that are not credibly dominated by any other class.

In [Mauá et al. 2018], the authors derived a polynomial-time algorithm for deciding the equation
above in the case of CPCs whose network structure is tree-shaped (i.e., every internal node has at most
one parent). We now review that algorithm, which propagates information from the leaves (input)
to the root node (output), differentiating between the type of node at which it operates. For a sum
node M with children M1, . . . , Mn and local weights wi ∈ Ci, the algorithm computes:

δM(y
′, y′′) = min

w∈C

n∑
i=1

wi[Mi(y
′, e)− Mi(y

′′, e)] = min
wi∈Ci

n∑
i=1

wiδMi(y
′, y′′) . (2)

For a product node M with children M1, . . . , Mn such that Y is in the scope of M1 (and no other), the
algorithm computes:

δM(y
′, y′′) = min

w∈C
[M1(y

′, e1)− M1(y
′′, e1)] = δM1(y

′, y′′)

n∏
i=2

opt Mi(ei) , (3)

where ei denotes the projection of e into the scope of Mi, and opt = max if δM1(y
′, y′′) < 0 and

opt = min if δM1(y′, y′′) ≥ 0. The first term in Eq. 3 denotes the recursive computation on the sub-PC
M1. Finally, if M is a leaf node representing an indicator variable then the algorithm computes:

δM(y
′, y′′) =


−1 if M is [[Y = y′′]],

1 if M is [[Y = y′]] or is consistent with e,

0 otherwise.
(4)

3. HANDLING NON-IGNORABLE MISSING DATA USING GENERATIVE RANDOM FOREST

We now review some background on handling non-ignorable missing data, and describe our contribu-
tion in this work.

3.1 Response Model

The presence or absence of a response (observation) for a given variable can be represented as an
associated Boolean random variable, by extending the sample space and generative model accordingly.
Let x be a dataset with missing and observed values x = {xobs,xmiss}, where xi

j represents the value
of variable Xj in the instance i, and xj,v is an indicator variable that represents that Xj takes on
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value v. Let r be a matrix of response-data indicators where rij = 1 if xi
j is observed and 0 otherwise.

The joint distribution over the data and response indicators is given by:

Pw,µ(X,R) = Pw(X)Pµ(R|X) , (5)

where Pw(X) is the data model (or sampling model), Pµ(R|X) is the selection model or response
model, and w and µ are parameters that specify the models.

We categorize missing data according to the conditional independences observed or assumed in the
response model [Little and Rubin 2014]. Missing data are missing completely at random (MCAR)
when the missing-data mechanism does not depend on any variable. Missingness obtained at random
(MAR) is produced when the missing data mechanism depend only on the observed values We say
that the data missingness is non-ignorable or Missing not at Random (MNAR) when the distribution
of missing data mechanism does depend on missing and observed values [Rubin 1976], that is,

Pµ(r|x) = Pµ(r|xobs,xmiss). (6)

To incorporate the response model in a joint distribution specified as a PC, we propose to augment
the data model, learned from complete or MAR data, with a response model, as follows. Starting
with this fixed structure and parameters, the augmentation consists in replacing each leave indicator
node [[Xj = v]] by a circuit rooted with a product node with two children, the first one is the original
indicator [[Xj = v]] and the last one is a sum node with response indicators [[Rj,v = 0]] and [[Rj,v = 1]]
as children and weights µj,v and 1−µj,v. This structure implicitly assumes that each response variable
Rj depends only on its corresponding data model variable, Xj , and of no other. More sophisticated
response models can be built if additional information is present. Figure 3 shows the augmentation
of data model structure for variables X and Z. The parameters associated to the response indicators
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Fig. 3. Augmentation of PC with response model (pink nodes) associated to missingness processes for variables X and
Z. In this example, the missing values for Y are generated by missing complete at random process. The resulting
structure is not tree-shaped, although some leaves are shown duplicated, for the sake of clarity.
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are obtained from a significant MNAR sample as:

µj,v = Pµj
(Rj = 1|Xj = v) =

PMNAR(Xj = v,Rj = 1)

PMNAR(Xj = v)
. (7)

The probabilities in the numerator can be estimated from the MNAR sample as relative frequencies
as they mentioned only observable quantities. The denominator in Equation 7 however includes cases
where the value of Xj is missing not at random (i.e., Rj = 0) and thus a relative frequency estimator
is biased and inconsistent. In the presence of a complete or missing at random sample we can compute
the denominator of Equation 7, by noting that:

PMNAR(Xj = v) = P complete(Xj = v) = PMAR(Xj = v) = PMAR(Xj = v|Rj = 1) .

In the augmented model, we perform inference by marginalizing missing variables at data indicators
and setting the corespondent values in response indicators to deal with the missing process, the
indicator [[Rj,v = 1]] propagates 1 when Xj is observable and [[Rj,v = 0]] when is missing.

3.2 CReM: A Partially Specified Response Model

Consider a PC M(X, Y ), possibly learned from some (complete or MAR incomplete) dataset of real-
izations of variables X, Y , and representing our data model. Suppose we are interested in using our
model to predict the value of a target variable Y given a configuration x of the variables such that
some of its values are missing, and we do not want to assume MAR. Suppose further that we do not
have access to the missingness mechanism. We can then augment our PC with the response model
described and use it to draw inferences about Y . The only impediment is the the estimation of the
parameters µj,v in Equation 7, as it relies on unseen and unavailable data. Very often, however, we
can rely on expert domain knowledge to provide rough estimates for those parameters. Being only
approximate, we are better subscribing for a partial specification in the form of probability intervals
[Cozman 2000]. If we have access to an MNAR sample of data (say, at prediction time), we can
instead derive such bounds from Equation 7, by considering all possible values for the denominator
P (Xj = v|Rj = 1):

µj,v ∈
[

nj,v

nj,v + nmiss
, 1

]
(8)

where nj,v denotes the number of occurrences of Xj = v in the MNAR dataset of size n with nmiss
missing values for Xj .

In either case, the result is an augmented Credal Probabilistic Circuit, where imprecision occurs only
at edges connected to input indicator nodes (viz. those edges associated with response indicators) that
we named CReM. As the respective network structure is not tree-shaped, we cannot in principle use
the algorithm described in Section 2.2 to compute the dominance criterion in Equation 1. However,
one can show, in much the same way as the conservative tractable rule in [Villanueva et al. 2021], that
for the special case of GeDTs that satisfy determinism and strong selectivity, that algorithm correctly
computes credal dominance in linear time. We omit the proof for lack of space.

4. EXPERIMENTS

We empirically evaluate the ability of our proposed method in producing set-valued classifications and
in assessing the robustness of “precise” classifications, under the presence of non-ignorable missing
feature values.

To this end, we learn class-factorized GeFs from some well-known complete datasets for density
estimation and classification [Davis and Domingos 2010; Goldberg et al. 2001], using the algorithm
in [Correia et al. 2020]. The characteristics of the datasets appear in Table I. Missing test values are
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Fig. 4. Accuracy vs percentage (%Instances) of the dominant instances for CIR vs Credal Response model using
Nltcs(left) and Dna (right) datsets, where robustness satisfy δM(y′, y′′) > δ, δM is defined as in Eq. (1), and y′ is the
class with higher δ.

simulated using a MNAR mechanism. The average number of missing values per instance is denoted
as AvM, and Y as number of classes.

Dataset Vars Test AvM Train Y Acc
CIR CReM

SAcc DAcc DR RAcc SAcc DAcc DR RAcc

Dna 180 1,186 24.5 1,600 2 79.1 92.3 76.9 69.1 88.9 84.4 80.2 91.7 83
Jester 10 7,486 3.6 17,467 5 36.4 96.4 21.3 2.7 41.5 59.6 31.7 36.6 37.9
Insurance 27 2,400 1.3 5,600 3 78.2 85.2 77.4 84.1 84.5 79.9 78 95.7 84.3
Nltcs 16 3,236 1.1 16,181 2 93.9 98.0 90.9 85.7 97.7 95.1 93.3 96.4 94.9

Table I. Characteristics of the datasets used and relevant performance metrics: accuracy (Acc), Set Accuracy (SAcc),
Discounted Accuracy (DAcc), Determinacy Rate (DR), and accuracy of determinate classifications (RAcc). See text
for explanation.

We also report in Table I the performance of the precise classifier, as well as relevant performance
metrics of our Credal Response Model (CReM) predictions and the Conservative Inference Rule (CIR)
proposed in [Villanueva et al. 2021]. Set Accuracy (SAcc) measures the percentage of (indeterminate
or determinate) classifications that contains the true class, Discounted Accuracy (DAcc) measures the
percentage of (determinate or indeterminate) of classifications that contain the true class, weighted by
the reciprocal of set size, DR shows the percentage of determinate classifications (the ones with a single
maximal class) and Precise Accuracy (RAcc) measures accuracy among determinate classifications.

According to the results, in comparison to CIR, CReM obtains smaller set and precise accuracies
with a significantly higher determinacy rate, leading to an overall improved discounted accuracy. The
effect of such a trade-off is also shown in the left plot in Figure 4, which displays precise accuracy of
classifications made either by CReM or CIR selecting the class with the highest value of δ, and sorted
by that same value for dataset Nltcs (left) and Dna (rigth). We see here that CReM is less adequate
than CIR at judging robustness of such instances.

5. CONCLUSIONS

We developed a new tractable method to perform predictive inference under non-ignorable missing
data with a partially specified response model of missingness using Generative Random Forest. Exper-
iments with realistic data showed that our method delivers less biased (probabilistic) classifications
than approaches that assume missing at random and are more determinate than similar existing
overcautious approaches.
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