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Abstract. Among the methods for training Multilayer Perceptron networks, backpropagation is one of the most
used ones on problems of supervised learning. However, it presents some limitations, such as local convergence and
the a priori choice of the network topology. Another possible approach for training is to use Genetic Algorithms to
optimize the weights and topology of networks, which is known as neuroevolution. In this work, we compare the
efficiency of training and defining topology with a modified neuroevolution approach using two different metaheuristics
with backpropagation on 5 classification problems. The network’s efficiency is assessed through Mutual Information and
Information plane. We concluded that neuroevolution found simpler topologies, while backpropagation showed higher
efficiency at updating the weights.

Categories and Subject Descriptors: I.2.6 [Artificial Intelligence]: Learning
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1. INTRODUCTION

In recent years, artificial neural networks (ANN) have arisen as a useful machine learning model to solve
a great range of real-world problems [Bishop 2006]. One of the most used types of ANN on supervised
learning problems is the MultiLayer Perceptron (MLP), which is usually trained by using the error
gradient with respect to the parameters that are calculated through the backpropagation algorithm.
To update the weights one may use the gradient information in different manners, such as the stochastic
gradient descent and the Adaptive Moment Estimation (ADAM) methods [Goodfellow et al. 2016].
Even being an efficient way of updating the several parameters present within an MLP, training
algorithms based on backpropagation can have some well-known limitations in the training process.
Among those limitations, we highlight the vanishing gradient problem, the high convergence to local
minima, and the occurrence of overfitting. Another important fact for successful network training is
the adequate definition of network topology, since too many parameters may cause overfitting, while
too few could cause underfitting [Goodfellow et al. 2016].

Some techniques were developed to overcome the limitations related to backpropagation [Bishop
2006; Haykin 2009], but the topology definition is mainly done by testing a few architectures, which
may lead to a poor/suboptimal choice among the wide range of possible structures. However, from
reinforcement learning, there is a different training approach named neuroevolution [Stanley and
Miikkulainen 2001], which trains a network using Genetic Algorithms (GA) [Boussaïd et al. 2013] and
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may provide a way to overcome the aforementioned limitations, allowing both weight adaptation and
topology definition during training, by means of a gradual increment of complexity. In this work, we
explore the idea of modifying a neuroevolution algorithm to train an MLP on a set of 5 supervised
learning problems. Using the information plane [Shwartz-Ziv and Tishby 2017], the neuroevolution
approach was then compared to the backpropagation algorithm in order to verify its capability of
overcoming the limitations of the latter.

The rest of this paper is organized as follows. Section 2 briefly explains neuroevolution and the
training algorithm proposed in this work. Section 3 introduces the mutual information measure and
how it is used to construct the information plane. Section 4 presents and analyses the results obtained
in the simulations. Ultimately, Section 5 conveys the conclusion obtained from the results.

2. NEUROEVOLUTION AND MNEAT

Since its creation, Genetic Algorithms (GA) have shown to be a useful optimization method for solving
complex optimization problems [Boussaïd et al. 2013]. The GA is a population-based metaheuristic
inspired by Darwin’s evolution theory. It performs a search for a good solution within a search
space by applying small modifications in the solution and selecting the best ones throughout several
generations, using the genetic operators of mutation, crossover, and selection. Modified versions of
GA can be made by changing the genetic operators, e.g., the Biased Random Key Genetic Algorithm
(BRKGA), which has a genetic operator that pushes the search process to the fittest solutions [Martí
et al. 2018].

Due to its capacity of optimizing solutions, GA can be used to train an ANN, which is named
neuroevolution. One of the most used neuroevolution algorithms is the NeuroEvolution of Augmenting
Topologies (NEAT), which is capable of optimizing the network’s weights and topology at the same
time [Stanley and Miikkulainen 2001; Stanley et al. 2019]. It uses a genetic encoding that is capable
of representing precisely an artificial neural network, and each gene has an innovation number that
provides a historical mapping among individuals (solutions) within a population. This historical
mapping allows individuals to be inserted into a species by comparing their evolutionary history, which
allows better search space exploration since species are capable of protecting structural innovation and
maintaining diversity throughout generations. The algorithm begins with a population of individuals
with a minimum topology, which is gradually increased by structural mutations that add new weights
and neurons. Starting with a minimal topology, NEAT reduces the initial search space, optimizing
the search process more efficiently than other neuroevolution algorithms.

Even though NEAT was originally built to solve reinforcement learning problems, it has interesting
features that could also be used to solve supervised learning problems, as we intend to show. In order
to use those features, in this work we created a modified version of NEAT that was applied to train
an MLP network on supervised learning problems, named Modified NeuroEvolution of Augmenting
Topologies (MNEAT). In addition, we considered two different metaheuristics for MNEAT. The first
one is MNEAT-GA, which has genetic operators inspired by GA, and the second one is MNEAT-
BRKGA, whose genetic operators are inspired by BRKGA.

One of the main differences between MNEAT and NEAT is the genetic encoding used to represent a
solution. In MNEAT, the solution’s genome is composed of two genes, the layer gene and the neuron
gene, that will form solutions that represent an MLP. Differently from NEAT, the connection weights
associated with a certain neuron are stored inside the neuron gene, in a way that each neuron will
keep its connection weights. The neuron gene also stores the enable bit, which indicates whether a
neuron and its associated connections shall be present in the network or not. Similarly to NEAT, the
crossover is done by matching the innovation number stored in the neuron genes of each individual.
This new genetic encoding was created to generate a more compact encoding that facilitates crossover.
Another difference from NEAT is that MNEAT has three types of mutation. The add layer mutation
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will add a new layer between two hidden layers that has a number of neurons equal to the average
number of neurons of the backward and forward layers. The add neuron mutation will add a new
neuron in one of the hidden layers that was selected randomly. The enable bit mutation will randomly
select a neuron gene and change its enable bit. The quality of the solutions within the population
was calculated using the error rate on the training set et(i) for the i-th solution candidate. Then the
fitness function is

f(i) =
2

et(i) + 1
− 1 , (1)

with f(·) being maximized in the evolution process. Notice that it will have its maximum value when
et = 0 and minimum when et = 1, therefore 0 ≤ f(i) ≤ 1.

In the same way as NEAT, the evolution process of MNEAT is defined by a set of parameters. Pa-
rameter pm defines the probability of a mutation occurring in a certain solution that is passed through
the mutation operator. When a solution suffers mutation, the probability of structural mutation, pms,
defines whether the mutation will add new structures or only change the weight of a certain neuron. In
case it suffers a structural mutation, the parameters pman, pmal, and pmeb will define the probabilities
of adding a new node, adding a new layer, or changing the enable bit, respectively. Otherwise, if it
suffers a weight mutation, then a random neuron will be selected and the parameter pmw will define
the probability of it having one of its weights randomly changed, while pmb will define the probability
of changing its bias weight. Parameters κp and κb define how much the weight mutation changes
a connection weight and a bias weight, respectively. To increase topology diversity within species,
MNEAT also allows interspecies crossover, which is controlled by the parameter pic, which defines the
probability of it occurring. The species uses a distance function that measures how different a certain
solution is from the species representative, which is defined randomly. A solution will belong to a
certain species if its distance is below the compatibility threshold δt. Additionally, MNEAT-BRKGA
has parameters pe and ρ, which define the percentage of best solutions of a species that will be put
into the elite group and the probability of a new solution inheriting the genes from the elite parent,
respectively.

Regarding the application of genetic operators, MNEAT-GA applies operators likewise the original
NEAT, i.e., a certain group with the best solutions is selected as the parents group, which will pass
through crossover and generate an offspring group. This group also passes through mutation, with
the population of the next generation being composed of the parents group plus the offspring group
(see Fig. 1). In the MNEAT-BRKGA, a certain percentage of the best solutions is selected as the
elite group, and the offspring group will be generated by the crossover operator, which constructs
a new solution using one parent from the elite and another from the non-elite group, with the new
solutions passing through the mutation operator (see Fig. 2). The mutation operator will be simply
a process that generates random solutions, creating the mutant group. In the end, the population
of the next generation will be composed of the elite group plus the offspring and the mutant group.
MNEAT’s mutation operator is also different from the original NEAT since the amount of random
change applied to a certain weight will vary accordingly to the fitness value, in such a way that the
higher the fitness, the smaller the change will be.

The performance of MNEAT (and backpropagation) can be assessed, as usual, through accuracy.
However, this performance measure solely focuses on the quality of the output, without considering
the topology and efficiency of the ANN layers. In that sense, as a complementary perspective, we also
consider the evaluation of the ANN solution through the Information Plane, as described next.

3. MUTUAL INFORMATION AND INFORMATION PLANE

In supervised learning problems, the weights of a network will be adjusted in order to allow the model
to get meaningful information from the input data about the expected results. Hence, an efficient
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Fig. 1: Application of genetic operators in MNEAT-GA.

Fig. 2: Application of genetic operators in MNEAT-BRKGA.

network will be one that can get the maximum amount of information about the output from the
input data.

In Information Theory, the mutual information measure, denoted as I(X,Y ), is capable of evaluating
how much information a random variable X carries about another random variable Y . It is defined
as [Cover and Thomas 1991]

I(X,Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
, (2)

where p(x, y) is the joint distribution of X and Y (with values over the space X × Y), and p(x) and
p(y) are the marginal distributions. Thus, this measure can be used to calculate the efficiency of
each network’s layer by calculating the amount of information that each layer has about the output.
Let us assume X is the random variable associated with the input data, Y is the random variable
associated with the output data, and Zi is the random variable that represents layer i, for 1 < i ≤ t.
Then, measuring I(X,Zi) evaluates the amount of information layer i has about the input data, while
I(Zi, Y ) evaluates the information layer i has about the output data. During training, an efficient
layer will decrease I(X,Zi) while increasing I(Zi, Y ), therefore, the former indicates the compression
ratio while the latter indicates prediction quality. The efficiency of the entire network can be visualized
by using the Information Plane, which allows one to see the evolution of information in each layer
throughout the training. In the information plane, each layer i will be placed at the coordinate
(I(X,Zi), I(Zi, Y )) and neighboring layers will be connected by a line [Shwartz-Ziv and Tishby 2017].
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The movement of the layers in the information plane can be analyzed to verify if a training method
has the capacity of setting efficient layers through training.

The pair (I(X,Zi), I(Zi, Y )) requires the knowledge of the adjacent distributions, but they are
unknown. However, they can be estimated using a number of methods, such as Parzen window [Parzen
1962]. In this work, we used histograms, since it presents reduced computational cost.

4. SIMULATIONS AND RESULTS

In order to compare the training capability of the training methods, each one of them was applied to 5
datasets of classification problems selected from public databases, with each method being simulated
10 times. All the methods used/generated an MLP that has the hyperbolic tangent function as
activation in the hidden layer and softmax as activation in the output layer. The training process
took 1000 epochs in backpropagation and 1000 generations in MNEAT-GA and MNEAT-BRKGA,
with the same MNEAT’s parameters set being used on all simulations.

Table I: Characteristics of the datasets used in this work.

Dataset Number of samples Number of features Number of classes
1 200 5 5
2 3000 13 2
3 6497 11 7
4 1885 12 7
5 297 13 5

The number of solutions in the population was set to 150. The parameters pm, pms, pman, pmal,
pmeb, pmw, pmb, and pic were set as 0.2, 0.15, 0.7, 0.2, 0.15, 0.9, 0.5, and 0.001, respectively. The
mutation powers κp and κb were set to 0.5. In the MNEAT-BRKGA, parameter pe was set as 20%,
while ρ was 0.85. For the MNEAT-GA, the compatibility threshold δt was 5, while for MNEAT-
BRKGA it was 6. The average error rate and its standard deviation obtained on each training
and test set are shown in Tables II and III, respectively, being “BP” an acronym that stands for
backpropagation. The datasets’ characteristics are described in Table I. Concerning the results’
topology, in the backpropagation it was set manually by testing different topologies, while in the
neuroevolution methods it was set automatically by the evolution approach.

Table II: Average error rate of 10 simulations on the training set. “BP” stands for backpropagation.

BP MNEAT-GA MNEAT-BRKGA
Dataset 1 0.0000 ± 0.0000 0.1482 ± 0.0802 0.0304 ± 0.0113
Dataset 2 0.1457 ± 0.0219 0.2224 ± 0.0196 0.2178 ± 0.0196
Dataset 3 0.6511 ± 0.0663 0.6175 ± 0.0203 0.6154 ± 0.0292
Dataset 4 0.7815 ± 0.0399 0.7071 ± 0.0208 0.6634 ± 0.0140
Dataset 5 0.2030 ± 0.0392 0.4896 ± 0.0201 0.4192 ± 0.0253

Table III: Average error rate of 10 simulations on the test set. “BP” stands for backpropagation.

BP MNEAT-GA MNEAT-BRKGA
Dataset 1 0.0050 ± 0.0158 0.3475 ± 0.1293 0.1725 ± 0.0583
Dataset 2 0.2135 ± 0.0231 0.2490 ± 0.0337 0.2368 ± 0.0290
Dataset 3 0.7238 ± 0.1539 0.8404 ± 0.0509 0.8193 ± 0.0595
Dataset 4 0.7966 ± 0.1089 0.8822 ± 0.0439 0.8891 ± 0.0523
Dataset 5 0.5317 ± 0.0564 0.5333 ± 0.0491 0.5200 ± 0.0576

By analyzing the results, we can observe that the neuroevolution-based algorithms generated good
results on datasets 1 and 2, but the results on datasets 3, 4, and 5 were not as good. However,
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it is important to notice that the results got by MNEAT-GA and MNEAT-BRKA were similar to
backpropagation, which shows that the neuroevolution approach has the capability of training the
networks. Furthermore, the backpropagation approach usually obtained smaller error rates, mainly
on the test set, showing that this approach was more precise at adapting the weights with the aim of
getting a network with good generalization. Table IV shows the average number of weights (connection
and bias weights) of the networks trained in each training method. Comparing the number of weights
of the networks obtained in each method, it is noticeable that, in general, the neuroevolution methods
obtained smaller topologies than backpropagation, which indicates that these methods were more
efficient in finding simpler topologies. In addition, the topologies found by MNEAT-GA were smaller
than those found by MNEAT-BRKGA, but the latter obtained a smaller error rate than the former,
indicating that the networks found by MNEAT-GA suffered some underfitting while the networks
found by MNEAT-BRKGA had better generalization capacity.

Table IV: Average number of weights of the networks trained in each method. “BP” stands for backpropagation.

Dataset BP MNEAT-GA MNEAT-BRKGA
1 60.0 49.3 112.7
2 290.0 46.8 131.7
3 311.0 75.7 139.3
4 343.0 80.6 183.0
5 176.0 63.7 173.2

To assess the efficiency of the trained networks, the mutual information associated with the layers of
the network was plotted on the information plane throughout training, as illustrated in Fig. 3. In this
figure, the star marker represents the output layer and the dot markers represent the hidden layers
(the input layer is not represented in the plane), and an ANN is represented by a star mark linked
with other dot marks. The color in the plane represents the epoch/generation when the network was
plotted in the plane: the black network represents the first epoch/generation while the yellow one
represents the last one. It is important to mention that in Figs. 3a and 3b the position of the best
network was plotted at each generation, while in Fig. 3c the average position of 10 networks was
plotted at each 50 epochs. Since in Figu. 3c the network is plotted after the first 50 epochs, we can
observe that the position of the output swiftly converges to a certain spot and remains there for the
rest of the training, while in Figs. 3a and 3b the output layer position increases slowly. Examining the
information plane plots, we can observe that the amount of information in the output layer was similar
in all methods, but backpropagation showed better information compression of input data at hidden
layers (Fig. 3c) since the amount of input information in the hidden layers was usually smaller than in
the neuroevolution. These results show that optimization of weights and topology by neuroevolution
is a feasible way of training ANNs and obtaining simple topologies, but this method lacks an efficient
mechanism of adapting weights since it is done in a randomized way.

One possible explanation for the low performance of the neuroevolution algorithms in some datasets
is the definition of the MNEAT’s parameters, since all datasets used the same values for the parameters.
Searching for the best value of parameters on each dataset could have generated better results. Another
limitation of neuroevolution is that the genetic encoding used to represent the networks tends to
generate a lot of species in the same generation and, because of that, the species have few solutions
that cannot optimize properly due to lack of diversity within it. It is noteworthy to mention the absence
of meaningful stopping criteria for the neurevolution which is capable of stopping the execution when
the solutions stop evolving. Currently, the execution stops when a certain number of generations was
executed or when a solution with a fitness value above 0.95 is found.

One possible way to overcome the limitations mentioned before is by changing the process of train-
ing. As mentioned earlier, the neuroevolution approach is able to define good small topologies while
backpropagation is better at updating weights. Thus, a new process of training could be composed
of two parts: the first one would be responsible for obtaining a partially trained solution with a
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(a) MNEAT-GA. (b) MNEAT-BRKGA.

(c) Backpropagation.

Fig. 3: Evolution of the information plane on dataset 1.

good topology by using neuroevolution, while the second one would update the weights of the found
topology by using a gradient-based training algorithm, e.g., backpropagation with stochastic gradient
descent. Another strategy to improve the efficiency of the network’s layers, mainly its compression
capacity, would be to create a fitness function that takes into account some layer efficiency criterion,
e.g., Information Bottleneck [Shwartz-Ziv and Tishby 2017].

5. CONCLUSION

In this work, we proposed the use of a neuroevolution-based approach in the training of MLPs on super-
vised learning problems through the adaptation of the NEAT algorithm, usually used on reinforcement
learning problems. Moreover, we also investigated the definition of simple and efficient network topolo-
gies through an incremental building process used in the GA and BRKGA evolution approaches. After
performing simulations using the backpropagation, MNEAT-GA, and MNEAT-BRKGA methods, we
observed that the neuroevolution methods (MNEAT-GA and MNEAT-BRKGA) and backpropaga-
tion obtained similar performance on all 5 selected datasets. However, backpropagation showed a
better capacity for adequately adapting the network’s weights, therefore achieving the lowest error
rates. By comparing the topologies acquired in each method, it was noticed that MNEAT-BRKGA
found the best architectures since it generated the smallest networks with performance similar to the
ones trained by backpropagation. Thus, the metaheuristics showed to be efficient at searching for
small topologies, however, backpropagation had a better capability of updating weights. The results
indicate that a better training method could be achieved by combining MNEAT and backpropagation.
This analysis, however, should encompass the use of a more expressive number of datasets. In this
sense, for future works, we intend to increase the experimental part by testing on more datasets and
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comparing it with other Neural Architecture Search methods [Elsken et al. 2018], which could provide
a better understanding on how efficient the proposed evolutionary approach is. Also, in order to
improve MNEAT’s weight adaptation, we intend to investigate the addition of a weight tuning step
in MNEAT based on backpropagation.
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