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Abstract. In the Natural Language Processing field (NLP), Machine Reading Comprehension (MRC), which involves
teaching computers to read a text and understand its meaning, has been a major research goal over the last few decades.
A natural way to evaluate whether a computer can fully understand a piece of text or, in other words, test a machine’s
reading comprehension, is to require it to answer questions about the text. In this sense, Question Answering (QA)
has received increasing attention among NLP tasks. For this study, we fine-tuned BERT Portuguese language models
(BERTimbau Base and BERTimbau Large) on SQuAD-BR - the SQuAD v.1.1 dataset translated to Portuguese by the
Deep Learning Brazil group - for Extractive QA task, in order to achieve better performance than other existing models
trained on the dataset. As a result, we accomplished our objective, establishing the new state-of-the-art on SQuAD-BR
dataset using BERTimbau Large fine-tuned model.

CCS Concepts: • Computing methodologies → Natural language processing.
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1. INTRODUCTION

Natural Language Processing (NLP) studies the capacity and limitations of a machine to comprehend
human language. In this field, the Machine Reading Comprehension (MRC), which involves teaching
computers to read a text and understand its meaning, has been a major research goal over the last
few decades [Patel et al. 2020; Wadhwa et al. 2018; Zeng et al. 2020]. The MRC is a challenging task,
since it requires both understanding of natural language and knowledge about the world [Patel et al.
2020; Rajpurkar et al. 2016; Zeng et al. 2020]. Nevertheless, with the advances in Deep Learning (DL)
techniques and increasing accessibility of large-scale datasets, it is now possible to train a model to
read and understand a language and perform specific NLP tasks, such as text classification, machine
translation, named entity recognition and question answering [Devlin et al. 2019; Pranesh et al. 2020;
Wadhwa et al. 2018; Yamada et al. 2020; Zeng et al. 2020].

A natural way to evaluate whether a computer can fully understand a piece of text or, in other words,
test a machine’s reading comprehension, is to require it to answer questions about the text. In this
sense, Question Answering (QA) has received increasing attention among NLP tasks [Mayeesha et al.
2021; Wadhwa et al. 2018; Zeng et al. 2020]. QA is concerned with building systems that automatically
respond to questions posed by humans in a natural language [Mayeesha et al. 2021; Patel et al. 2020;
Rajpurkar et al. 2016; Zeng et al. 2020]. The Extractive QA task, specifically, shares the same goal of
the typical machine reading comprehension task, which can be formulated as the following supervised
learning problem: given a passage of text and a question as input, select a contiguous span of text
in the passage as the answer. Consequently, training models to perform Extractive QA task requires
labeled datasets, most commonly human-constructed (e.g., via crowdsourcing) [Cambazoglu et al.
2021; Joshi et al. 2020; Liu et al. 2021; Rajpurkar et al. 2016; Yamada et al. 2020; Zeng et al. 2020].
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The driver behind progress of question answering research has been the availability of high-quality
large datasets and release of models performing well on these datasets [Cambazoglu et al. 2021; Liu
et al. 2021; Pranesh et al. 2020; Rajpurkar et al. 2016; Zeng et al. 2020]. An example is the Stanford
Question Answering Dataset (SQuAD), the most widely used MRC dataset, that contains more than
100k questions generated by crowd-workers, contributing to the emergence of state-of-the-art models
like ELMo, BERT and XLNet [Rajpurkar et al. 2016; Zeng et al. 2020]. Nonetheless, the abundance of
benchmark datasets available in the QA field is limited to few languages, with a clear predominance of
English and Chinese, as shown in [Cambazoglu et al. 2021]. Thus, due to lack of natural high-quality
reading comprehension datasets, similar progress has not been achieved in other languages, such as
Portuguese [Cambazoglu et al. 2021; Mayeesha et al. 2021].

On the other hand, advances in language representation using DL have made it viable to transfer
the learned internal states of large pre-trained Language Models (LM). In other words, it is now
possible to adapt models pre-trained on large linguistic corpora to downstream tasks like QA [Devlin
et al. 2019; Pranesh et al. 2020; Souza et al. 2020]. This transfer learning approach is highly beneficial
when labeled data is scarce, making pre-trained LMs valuable resources specially for languages with
few annotated datasets [Mayeesha et al. 2021; Souza et al. 2020]. Regarding Portuguese, [Souza et al.
2020] trained BERT models for Brazilian Portuguese, resulting in BERTimbau, a LM that achieves
state-of-the-art performances on three NLP tasks for two Portuguese benchmark datasets [Guillou
2021a; 2021b; Souza et al. 2020].

Shortly after, the Deep Learning Brazil group translated the SQuAD v.1.1 dataset to Portuguese
using the Google Translate and some crowdsource corrections [DeepLearningBrasil 2021]. Throughout
this work, this dataset is referred to as “SQuAD-BR”. With a powerful new LM and a large MRC
dataset available for Portuguese, it became possible, through transfer learning approach, to build
models with better performance for QA tasks in that language [Mayeesha et al. 2021]. So far, little
research has been conducted on SQuAD-BR dataset and, to the best of our knowledge, the state-of-
the-art Extractive QA model trained on this dataset emerged in [Guillou 2021b].

Given this opportunity to advance in MRC tasks for the Portuguese language, in this research
we improved the state-of-the-art on Extractive QA on the SQuAD-BR dataset by improving the
fine-tuning of the models proposed in [Guillou 2021b]. In Section 2, we briefly introduce the main
related works that supported our research. Then, Section 3 describes our models, and Section 4
presents the experiments carried out, involving the dataset used, the pre-processing steps, the training
hyperparameters and the results achieved. Finally, Section 5 concludes our research and proposes
future work to improve the model’s performance.

2. RELATED WORK

2.1 BERT

Bidirectional Encoder Representations from Transformers (BERT) refers to a self-supervised approach
for pre-training transformer layers, before fine-tuning it for a specific NLP task. BERT uses two unsu-
pervised tasks called Masked Language Modelling (MLM) and Next Sentence Prediction (NSP). The
MLM randomly masks some of the tokens from the input in order to predict the original vocabulary
based on its context. In this way, it enables the representation to fuse the left and the right context,
allowing the pre-training of a deep bidirectional transformer. The NSP objective is to predict whether
a given sentence B is the actual continuation of a sentence A or whether it is a random sentence. By
doing so, the pre-trained model can capture sentence level relationships, which is very beneficial to
important downstream tasks such as QA [Devlin et al. 2019].

BERT was pre-trained in two model sizes: BERT Base (L=12, H=768, A=12, Total Parame-
ters=110M) and BERT Large (L=24, H=1024, A=16, Total Parameters=340M), where L is the
number of layers (i.e., Transformer blocks), H is the hidden size and A is the number of self-attention
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heads. In addition, a multilingual BERT model (mBERT) was trained on 104 languages using the
BERT Base architecture [Souza et al. 2020]. BERT models has demonstrated to have a good perfor-
mance in QA tasks, significantly improving results on the SQuAD dataset. Beyond that, the recent
rise in powerful LMs like BERT and its variants has made it possible for NLP tasks to make great
progress even in low resource languages [Cambazoglu et al. 2021; Devlin et al. 2019; Mayeesha et al.
2021; Zeng et al. 2020].

2.2 BERTimbau

In recent years, much effort has been devoted on pretraining BERT-derived models on other languages,
such as French, Dutch, Spanish, Italian, and others. Following this trend, [Souza et al. 2020] trained
BERT models for Brazilian Portuguese using data from Brazilian Web as Corpus (BrWaC) [Wag-
ner Filho et al. 2018], giving rise to the BERTimbau LM.

BrWac dataset is a huge Portuguese corpus which contains 2.68 billion tokens from 3.53 million
documents. A new vocabulary of around 30,000 subword units was generated for the model based on
this dataset and random sentences from Portuguese Wikipedia articles. The resulting vocabulary was
then converted to WordPiece format, the input representation for BERT [Souza et al. 2020].

BERTimbau was evaluated on three NLP downstream tasks (sentence textual similarity, recognizing
textual entailment, and named entity recognition) for the ASSIN2 and the First HAREM/MiniHAREM
Portuguese datasets. As a result, the model improved the state-of-the-art on these tasks over multilin-
gual BERT and previous monolingual approaches [Souza et al. 2020]. Like original BERT, BERTimbau
is available on two model sizes: BERTimbau Base and BERTimbau Large [Souza et al. 2020].

2.3 Portuguese BERT QA models

To the best of our knowledge, the first Extractive QA model trained on SQuAD-BR emerged in [Guillou
2021a], using transfer learning approach from the BERTimbau Base LM. The research was facilitated
by several Artificial Intelligence (AI) institutions, such as Hugging Face, Neuralmind and the Deep
Learning Brazil group, which provide online tools (datasets, LMs, scripts and GPU platforms). The
model performed well on the SQuAD-BR dataset. However, the author pointed out that English
models perform even better, and, to achieve the same levels, it would be necessary to use a more
efficient LM and a QA dataset in Portuguese with more examples.

The extent of the research was released a few months later. [Guillou 2021b] trained a new model
on SQuAD-BR dataset using BERTimbau Large, a bigger LM than the previous one, giving rise to
the new state-of-the-art, as far as we can tell. The author, however, still states that further advances
are possible in order to obtain similar performance when compared to English models.

3. MODELS

This section describes the details from the models fine-tuned for the task of Extractive QA on SQuAD-
BR dataset [DeepLearningBrasil 2021]. Extractive QA systems seek to find the answer for a given
input question from the input context as a contiguous sequence. The model predicts the starting index
and the ending index of the tokens in the context that correspond to the answer span [Cambazoglu
et al. 2021; Joshi et al. 2020].

We used transfer learning from BERTimbau to improve the QA model when compared to a model
trained from scratch [Malte and Ratadiya 2019]. In the next subsections we show the rationale for
this approach.

Symposium on Knowledge Discovery, Mining and Learning, KDMILE 2020 - Algorithms Track.



4 · E. H. M. da Silva, J. Laterza, T. P. Faleiros

3.1 Pre-trained Models

As already mentioned, the original BERT Base and Large models were pre-trained jointly on two tasks:
MLM and NSP. Pre-training a model not only on MLM but also on NSP improves the performance
of QA tasks significantly when applied to the original english SQuAD v1.1 [Devlin et al. 2019].

BERTimbau uses the same tasks as the original BERT for pre-training, only changing the dataset:
the Wikipedia is replaced by the Brazilian Web as Corpus (BrWaC) dataset. As a result, BERTimbau
outperforms BERT Multilingual on three downstream NLP tasks for two Portuguese benchmark
datasets [Souza et al. 2020]. Based on BERTimbau state-of-the-art results on Portuguese datasets, we
used pre-trained BERTimbau models (Base and Large) to fine-tune for a new task: Extractive QA.

3.2 Fine-tune BERTimbau on Extractive QA

This step is leveraged by both MLM and NSP tasks, mainly by the latter, due to the understanding
of the relationship between two sentences [Devlin et al. 2019]. It needs less data to give good results
when compared to building a model with weights randomly initialized and no transfer learning [Malte
and Ratadiya 2019].

One important limitation is that the maximum input size for BERT models is 512 tokens. To
circumvent this, we split each input into multiple inputs that fit the limit size at the cost of losing
some context of the entire text. This is shown in Section 4.2.

Some important advantages of using BERTimbau pre-trained models for fine-tune are:

(1) Use of embeddings learned from a huge corpus to represent words and sub-words from various
contexts and possible meanings, thus improving the overall understanding of the input.

(2) Use of BERT [Devlin et al. 2019] architecture that allows for significantly more paralleliza-
tion [Vaswani et al. 2017].

We fine-tuned two pre-trained Masked LMs [Ahn et al. 2016]: BERTimbau Base and BERTimbau
Large. In both models we add a linear layer with two outputs at the end of the pre-trained model
hidden layer and use the cross entropy as our loss function for backpropagation. These two outputs
predict the start index and the end index in the input context that contains the answer for the input
question.

4. EXPERIMENTS

The experiments were conducted by comparing the two models described above using the pre-trained
models and adding a linear layer with two outputs at the end of the pre-trained model. Every layer is
trainable (i.e., unfrozen) for fine-tune. The code used in this research is available on github repository1

with the dataset used to train and validate the models.

4.1 Dataset

As mentioned before, the SQuAD dataset is one of the first large MRC datasets, with a collection of
more than 100k crowdsourced question/answer pairs posed on several Wikipedia articles, where the
answer to each question is a segment of text from the corresponding reading passage. The data is
split into training set (85%) and development set (15%). Since it was released in 2016, SQuAD v1.1
quickly became the most widely used dataset for machine reading comprehension tasks [Devlin et al.
2019; Rajpurkar et al. 2016; Zeng et al. 2020].

1https://github.com/erichans/question-answering-squad-pt-br

Symposium on Knowledge Discovery, Mining and Learning, KDMILE 2020 - Algorithms Track.



New State-of-the-Art for Question Answering on Portuguese SQuAD v1.1 · 5

Although the SQuAD is an English dataset, there has been several works on translating it to other
languages, such as Arabic, Korean, Hindi, Spanish, and Bengali [Mayeesha et al. 2021]. Recently,
the Deep Learning Brazil group translated the SQuAD v.1.1 dataset to Portuguese using the Google
Translate. As this machine translation engine inevitably propagates its decoding errors into the QA
engine, the group also spent about two months making corrections to the translated dataset, before
releasing the SQuAD-BR dataset. [DeepLearningBrasil 2021; Ravichander et al. 2021].

To evaluate model’s performance on SQuAD v.1.1 dataset, [Rajpurkar et al. 2016] proposed two
metrics: Exact Match (EM) and F1 score. EM is a binary metric that measures the percentage
of predictions that match any one of the ground truth answers exactly (not counting punctuation
and articles). F1 score, on the other hand, is a less strict metric, calculated as the harmonic mean
of precision and recall, measuring the average overlap between the prediction and ground truth an-
swer [Mayeesha et al. 2021; Rajpurkar et al. 2016; Zeng et al. 2020]. The same metrics are used in
this work to evaluate our model.

4.2 Preprocessing

For SQuAD-BR dataset the same QA model architecture described in [Devlin et al. 2019] was adopted.
Therefore, we used WordPiece embeddings with the vocabulary generated in [Souza et al. 2020] to
tokenize the questions and contexts of the dataset. Next, since BERT input representation consists
of a single packed token sequence, we converted the question Q = (q1, q2, ..., qm) and the context
C = (c1, c2, ...cn) into a single sequence S = [CLS] q1q2...qm [SEP ] c1c2...cn [SEP ], before passing it
to the pre-trained models referenced in Section 3.2 [Devlin et al. 2019; Joshi et al. 2020; Souza et al.
2020].

In addition, to overcome BERT model’s sequence length limitation of 512 tokens, we used the
overlapping window technique, in which the inputs were split into overlapping spans of the maximum
length using a fixed stride [Souza et al. 2020], as shown in Figure 1. Sequences longer than the
maximum length were truncated, and sequences shorter than this were padded. As the answers can
be a span extracted from the context passage, there may be inputs with unanswerable questions. In
these cases, we simply set the answer span to be the special token [CLS] [Joshi et al. 2020; Mayeesha
et al. 2021].

Fig. 1. Overlapping window technique with max sequence length of 512 tokens and stride of 128 tokens.

4.3 Training Hyperparameters

We had to change some hyperparameters when fine-tuning the BERTimbau Base model and the
BERTimbau Large model to obtain the best results of each one.

Symposium on Knowledge Discovery, Mining and Learning, KDMILE 2020 - Algorithms Track.



6 · E. H. M. da Silva, J. Laterza, T. P. Faleiros

4.3.1 Common hyperparameters. Both models were trained for two epochs, since larger numbers
of epochs led to worse results, as verified during the training. The best models with respect to the
SQuAD-BR dataset were chosen using F1 score on output. We also calculate EM to compare our
models using both metrics.

We trained different max lengths for input tokens per training example, starting using 384 tokens
like in [Guillou 2021a], and we got better results using 512 tokens, which is the maximum that
BERT models can ingest from input. When the input example (question + context) is greater than
512 tokens, we cut the surplus tokens in the context, move them to a new example and repeat the
question, repeating this process until we can have all the inputs adjusted in several examples. To
compensate potential context loss, we use stride of 128 tokens from the previous example to the next
one, as shown in Figure 1.

When we used 384 tokens as our max length, we had to split 1,675 input contexts from training
set and 366 input contexts from development set because they could not fit the maximum limit. It
corresponds to 1.91% and 2.80% of the total contexts tokens, respectively. When using 512 tokens
as max length, the split numbers dropped to 248 from training set and 93 from development set,
corresponding to 0.28% and 0.71% of their total contexts tokens, respectively. Those limits are shown
in Figure 2. Even though only few examples were impacted by the change from 384 to 512 token limits,
this small change seemed to improved the results without the fine-tune of the other hyperparameters.

Fig. 2. Number of tokens on SQuAD-BR dataset and max sequence length limitation.

The optimizer chosen was Adam with decoupled weight decay (AdamW) [Loshchilov and Hutter
2017]. The AdamW changes the way the weight decay is treated in Adam [Kingma and Ba 2015] by
decoupling weight decay and loss-based gradient updates in Adam [Loshchilov and Hutter 2017]. The
weight decay applies to all layers except all bias and LayerNorm weights in AdamW optimizer [Hug-
gingface 2021]. Despite the good results shown by [Gotmare et al. 2018] using warmup for learning
rate, we had no improvements using warmup steps nor warmup ratios. This led the models to worse
results in this case, so we set them to zero.

4.3.2 BERT Base hyperparameters. The BERT Base model was trained using a mini batch size of
16 and a learning rate of 4.25e-05. Larger or smaller batch sizes did not show any relevant improve-
ment.
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4.3.3 BERT Large hyperparameters. The BERT Large model was trained using a mini batch size
of 8 and a learning rate of 3e-05. Even using a good GPU (Nvidia RTX 3090) with 24GB we could
not fit a larger batch size.

4.4 Results

This section details the findings from our experiments using BERTimbau Base and Large for Extractive
QA task on SQuAD-BR. These models had been fine-tuned to compare their performance using F1
Score and EM as shown in Table I.

Table I. Question Answering Experiment Results on portuguese SQuAD v1.1.
Architecture Exact Match (EM) F1-Score
BERTBASE Portuguese QA HuggingFace [Guillou 2021a] 70.49% 82.50%
BERTBASE Portuguese QA (Ours) 71.09% 82.91%
BERTLARGE Portuguese QA HuggingFace [Guillou 2021b] 72.68% 84.43%
BERTLARGE Portuguese QA (Ours) 73.12% 84.74%

Our BERTimbau Large QA model established a new state-of-the-art on SQuAD-BR and, as ex-
pected, it achieved a better result when compared to our BERTimbau Base QA model. Our BERT
Base QA model also surpassed the BERT Base from [Guillou 2021a].

5. CONCLUSIONS AND FUTURE WORK

In this work we achieved the objective of establishing a new state-of-the-art on SQuAD-BR, the
SQuAD v.1.1 dataset translated to Portuguese by the Deep Learning Brazil group, by proposing a
Extractive Question Answering model that surpasses, in performance, the model proposed by [Guil-
lou 2021b]. We progress in both metrics, Exact Match and F1 Score, using BERTimbau Base and
BERTimbau Large pre-trained LMs as shown in Table I.

We plan to fine-tune BERTimbau LM on SQuAD-BR and then fine-tune the QA as proposed
by [Howard and Ruder 2018]. We also plan to train a new LM model from scratch based on newer
models like XLNet [Yang et al. 2019] and T5 [Raffel et al. 2020]. Another aproach that may lead to
good results is use a NER classifier to identify entities in the context and add as input features to the
QA model.

While our models has performed well when compared to the previous approaches, they had been
trained only on SQuAD-BR. We plan to further improve the robustness of the model by training it
on different datasets to reduce the effect of distribution shift, as shown in [Miller et al. 2020].
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