
Forgetting on Evolving Graphs for Accurate and Diverse
Stream-Based Recommendation

Murilo F. L. Schmitt, Eduardo J. Spinosa

Universidade Federal do Paraná (UFPR), Brazil
{mflschmitt, spinosa}@inf.ufpr.br

Abstract. Stream-based recommender systems are an active research field, relying on incremental algorithms to
update models by incorporating new data on a single pass, discarding such data after processing. A limitation of
solely including new data is the accumulation of obsolete concepts, which eventually raises accuracy and scalability
concerns. In this work, we propose a gradual forgetting technique for incremental neighborhood-based methods that
locally forgets items based on recency and popularity, by decreasing importance of neighborhood of items for every
incoming observation to emphasize more recent and reinforced ones. The technique includes parameters to increase
diversity, by retaining less popular yet relevant items, and scalability, by pruning obsolete connections not reinforced by
new data. Experiments conducted by extending a recent incremental graph-based approach highlight the effectiveness
of the proposed technique, as its application improved scalability and diversity, outperforming baselines.

Categories and Subject Descriptors: I.2.6 [Artificial Intelligence]: Learning

Keywords: recommender systems, data streams, forgetting, online learning

1. INTRODUCTION

Recommender systems present personalized sets of items to users based on their interests. When users
interact with online systems, they provide feedback to the system, e.g., with click-through data and
shopping behavior, which can be collected from all users and indirectly provides information related
to user behavior, i.e., implicit feedback. Based on feedback provided by many users, models can
be built to predict unknown user-item preferences through past behavior and recommend relevant
items based on interests of similar users. Such approach is termed collaborative filtering (CF) and
significant progress has been achieved through neighborhood-based methods [Ning et al. 2015] and
matrix factorization [Koren 2009]. Despite their effectiveness, CF approaches mostly rely on batch
processing. In real world systems, data is generated continuously at unpredictable rate, becoming
unfeasible to retrain models as data is generated since it gets increasingly more expensive, which leads
to poor recommendation performance as new information is disregarded between updates.

An alternative is to address recommendation as a data stream problem and design Stream-Based
Recommender Systems (SBRS), where user feedback incomes continuously in real time at unpre-
dictable rate and order, with new users and items, and an always-available model must process ob-
servations as fast as they arrive [Vinagre et al. 2019]. Incremental algorithms are capable of learning
new concepts and updating models with incoming feedback from the data stream, discarding it after
processing. Hence, SBRS rely on these algorithms, which are viable for dynamic scenarios, as they
have the ability to evolve over time in scalable manner [Al-Ghossein et al. 2021].

A limitation of incremental SBRS in general is that they learn solely by incorporating new infor-
mation. When learning from data streams, previously known concepts change over time and become

This work was partially funded by CAPES.
Copyright©2022 Permission to copy without fee all or part of the material printed in KDMiLe is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Symposium on Knowledge Discovery, Mining and Learning, KDMILE 2022 - Algorithms Track.



2 · Murilo F. L. Schmitt and Eduardo J. Spinosa

obsolete, i.e., concept drift [Gama et al. 2014]. Continuous incorporation of information leads to
ever-growing models, which eventually causes the accumulation of obsolete information, raising two
challenges [Vinagre and Jorge 2012; Matuszyk et al. 2018]: (1) it introduces noise in the learning
procedure, negatively affecting recommendations, degrading predictive power; (2) Maintaining such
noise in ever-growing models leads to scalability issues, as time and memory requirements increases.

In that sense, application of forgetting mechanisms to remove obsolete information from these
models can lead to improvements in accuracy and scalability [Vinagre and Jorge 2012; Matuszyk et al.
2018]. However, the challenge of removing obsolete information is not trivial. The definition of obsolete
is a problem in itself, as it differs from old [Matuszyk et al. 2018], e.g., a stable relation between two
old movies is not necessarily obsolete, while new information from a user that is temporarily sharing
her account may be. Thus, forgetting mechanisms must select and remove obsolete information during
model update while avoiding more complexity in the process. Another consideration is sparsity, an
issue related to CF, i.e., users interact with only a small number of items. Therefore, little information
is available from each user. Removing information from learning should avoid aggravate this issue.

In this paper, we propose a forgetting technique that selects elements to be forgotten based on
recency and popularity, where the importance of neighborhood of items decreases for every incoming
observation to emphasize more recent ones. We introduce a diversity parameter to allow increases
in likelihood of retaining less popular items, and a weight threshold to prune obsolete data and im-
prove scalability. To evaluate our technique, we built on IGSIπ̂t [Schmitt and Spinosa 2022], a recent
graph-based SBRS that outperformed related models in accuracy with competitive scalability. Our
results show that the proposed forgetting technique improves scalability, as the removal of obsolete
data reduces time and memory requirements, diversity, by including less popular items in the recom-
mendation lists, and may also improve accuracy, since obsolete data will no longer affect learning.

2. BACKGROUND

The top-N recommendation task consists of recommending personalized subsets of items to users
based on their preferences [Cremonesi et al. 2010]. Let U = {u1, u2, ..., um} denote the increasing set
of users and I = {i1, i2, ..., in} the increasing set of items. Denote ⟨u, i, t⟩ as an incoming observation
in a continuous user feedback data stream, indicating that user u interacted with item i at time t. A
SBRS model must update itself with each observation at least as fast as their arrival with a single
pass and provide recommendations with up to date information in real time [Vinagre et al. 2019].

In [Schmitt and Spinosa 2020; 2022], we proposed IGSIπ̂t , a SBRS that incorporates interactions in
an item-graph, where nodes represent items and directed edges represent sequential user interactions.
Denote G = (V,E,w) as a weighted directed graph, where V = {v1, v2, ..., vn} ⊆ I denotes the set of
nodes and E ⊆ V ×V the set of edges. Each edge e has an associated weight w(e) ∈ R+. Denote A as
the adjacency matrix of G, where aij = w((i, j)) if (i, j) ∈ E and 0 otherwise, and D as the diagonal
degree matrix of G, where dii =

∑
(i,k)∈E aik. For each user u ∈ U , a list of items interacted by u

sorted according to time t is defined as Su = {(v1, t1), ..., (vn, tn)}. We denote the last element of Su

as (liu, ltu), where liu is the most recently interacted item by u and ltu is the time of such interaction.

For each incoming ⟨u, i, t⟩, if u is an unknown user, a representation for u is created, i.e., Su = ∅,
(i, t) is included in Su and liu ← i. If u is a known user, feedback is included in the graph by an edge
(liu, i), and both Su and liu are updated. The relevance of edges is distinguished by their weights,
and the relevance of each sequential interaction is reinforced based on the frequency with which those
interactions are made. If i is unknown, A and V are updated to include node i, edge (liu, i) is added to
E and w((liu, i)) = 1. If i ∈ V , the weight of edge (liu, i) is updated by w((liu, i))t = w((liu, i))t−1+1.

To generate recommendations to a user u, IGSIπ̂t finds the most relevant items in relation to the
last r items in the ordered list of interactions Su, where r is a parameter. This filtering adjusts rec-
ommendations to short-term interests of u, improving accuracy. Candidate items are ranked through

Symposium on Knowledge Discovery, Mining and Learning, KDMILE 2022 - Algorithms Track.



KDMiLe - Symposium on Knowledge Discovery, Mining and Learning - Algorithms Track · 3

simulations of random walk with restart (RWR). A RWR infers which nodes are most relevant to a
given node s by measuring the frequency with which a random walker visits nearby nodes. Starting
from s ∈ V , with probability γ the walker moves from a node to one of its neighbors at random,
where the probability of transitioning from a node i to j is pij = aij/dii, or returns to s with (1− γ)
probability. The stationary distribution πt

s of the RWR starting at s provides a ranking of items based
on s, where nodes close to s have more relevance as they will be visited more frequently.

Since it is impractical to continuously compute the stationary distribution in an ever changing
graph, IGSIπ̂t approximates πt

s through random walk sampling, by running M independent t-step
random walks starting from s, where for each node v ∈ V , π̂t

s,v is defined by the number of visits to v

by the M random walks multiplied by (1−γ)
M . Denote rSu as the last r items in Su. Recommendations

to u are generated by computing and averaging π̂t
s for each s ∈ rSu. In [Schmitt and Spinosa 2022]

we observed that short random walks (t = 3) are sufficient in providing accurate recommendations
and that the number of samples M allows a trade-off between accuracy and scalability.

3. RELATED WORK

This section discusses the application of forgetting techniques to SBRS. A recent comprehensive review
related to SBRS methods can be found in [Al-Ghossein et al. 2021].

Incremental neighborhood-based methods store similarities between users or items that are up-
dated based on each received observation, where neighborhoods and ranking of items are computed
before each recommendation. Forgetting strategies have been devised to disregard and remove obso-
lete information and reduce the size of models used for neighborhood computation in order to improve
recommendation times. Such forgetting can be either abrupt or gradual. Abrupt forgetting relies on
sliding windows, defined by a number of interactions or time intervals, where only observations in-
cluded in the windows are considered, and observations outside of it are forgotten. Sliding windows
have been applied to user and item-based methods [Vinagre and Jorge 2012]. Performance depends
largely on the size of the window. Despite its simplicity and straightforward application, a limitation
is that it does not distinguish old from obsolete and simply forgets as defined by the window.

Alternatively, gradual forgetting relies on mechanisms to weight observations based on recency, by
considering recent to be more important than older ones. Techniques to gradually decrease impor-
tance of observations over time and assign higher weights to more recent ones have been explored
in neighborhood-based methods [Ding and Li 2005; Tabassum et al. 2020]. In general, recommenda-
tions based on recent information provide improved accuracy. [Vinagre and Jorge 2012] used a decay
function to decrease similarities over time unless reinforced by new data, by multiplying the entire
similarity matrices with a positive fading factor before each update. When these reach a low value,
they are assumed to be zero, reducing model size and improving scalability. A limitation is that its
global application presents reduced effectiveness in the presence of subtle local changes.

Matrix factorization (MF) methods maps users and items in a common latent feature space of low
dimensionality, such that their affinity is given by the inner product of their embedded vectors. These
methods obtain significant improvements in predictive capability by modeling temporal information
[Koren 2009]. [Matuszyk et al. 2018] proposed several strategies to select and remove obsolete in-
formation from MF models, divided into two categories. Rating-based forgetting select and discard
ratings from lists through sliding windows and sensitivity analysis. Latent factor-based forgetting
adjust latent factors of users to reduce the impact of past observations, based on volatility, frequency
and popularity. Experiments suggest that latent factor-based forgetting are successful in predictive
power and computation time. Finally, forgetting based on a first in, first out (FIFO) queue that adjust
user vectors was explored in [Vinagre et al. 2015], where a global queue of all items seen in the stream
ordered based on recency of item occurrences, is deployed and used to select older items as negative
feedback to the active user and give greater importance to more recent ones, improving accuracy.

Symposium on Knowledge Discovery, Mining and Learning, KDMILE 2022 - Algorithms Track.



4 · Murilo F. L. Schmitt and Eduardo J. Spinosa

4. PROPOSED APPROACH

The incremental nature of IGSIπ̂t results in an ever-growing model that learns solely by incorporating
new information. Although incremental models incorporate feedback in real time, users’ preferences
evolve over time and are subject to concept drift [Gama et al. 2014]. Hence, information retained in
these models may become obsolete. The accumulation of obsolete information results in increasing time
and memory requirements, raising scalability concerns. These concerns are related to all neighborhood-
based methods, as ranking of items is performed at the time of recommendation based on similarities
that are updated after every observation. The inclusion of obsolete information in this process also
negatively impacts the predictive power of algorithms [Matuszyk et al. 2018]. The lack of mechanisms
to remove obsolete information means that IGSIπ̂t is susceptible to the aforementioned concerns.

We aim for a model capable of continuously incorporating user feedback, but also capable of remov-
ing outdated information while controlling its growth. To that end, we propose a gradual forgetting
technique that selects information to be forgotten based on recency and popularity. IGSIπ̂t is updated
at every observation ⟨u, i, t⟩, where an edge connecting the last interaction by u, liu, to the current
item i is updated by increasing the weight of edge (liu, i). In order to decrease the importance of older
information and emphasize the most recent interaction, before the incremental update based on the
current observation, we select the neighborhood of liu to be forgotten. In other words, the relevance
of successors to liu is reduced before increasing the weight of the new connection. By forgetting
information locally, we avoid aggravation of sparsity issues, since old and stable concepts that are not
reinforced are retained and only forgotten in the presence of new concepts.

An important consideration is that the majority of interactions are related to the most popular
items, which represents a small portion of the item catalog, while the set of less popular items that
represent a large portion, i.e., the long-tail of the distribution [Cremonesi et al. 2010], accounts for
a small fraction. The inclusion of items from the long-tail is important as it improves diversity
of recommendation lists. However, the degrees distribution of the item-graph naturally follows the
aforementioned distribution, and the recommendations generated by IGSIπ̂t are affected by popularity.

Given that both items from the long-tail and new items have lower node degree, we propose a
forgetting function where the fading factor of each item is proportional to its popularity. We introduce
a diversity parameter that allows slower forgetting for less popular items. We measure the popularity
of nodes through its degrees, and assume that nodes with low indegree represent both items from
the long-tail and new items, i.e., candidate items for slower forgetting. To also allow exploration in
random walks, we penalize sink nodes by considering the outdegree of nodes in the forgetting function.

Denote by p a predecessor of an item i, and α ∈ (0, 1) a fading factor. To decrease the relevance of
i, edges connecting nodes to i can be updated by w((p, i))t = α ·w((p, i))t−1. To decrease the impact
of forgetting for less popular items, we introduce a convex combination factor β, that adjusts α for
each item based on their popularity, measured through the degrees of its node, normalized according
to the degree distribution of the neighborhood of the predecessor item, as defined by Eq. (1):

w((p, i))t = αβX+(1−β)Y · w((p, i))t−1 (1)

X =

{
1 if ∆−(N+(p)) = δ−(N+(p))

deg−(i)−δ−(N+(p))
∆−(N+(p))−δ−(N+(p)) otherwise

(2)

Y =

{
1 if ∆+(N+(p)) = δ+(N+(p))

∆+(N+(p))−deg+(i)
∆+(N+(p))−δ+(N+(p)) otherwise

(3)

where deg−(i) and deg+(i) are the indegree and outdegree of node i, N+(p) is the set of successors
of node p, ∆−(N+(p)) and δ−(N+(p)) are the maximum and minimum indegree among successors of

Symposium on Knowledge Discovery, Mining and Learning, KDMILE 2022 - Algorithms Track.



KDMiLe - Symposium on Knowledge Discovery, Mining and Learning - Algorithms Track · 5

Algorithm 1: Online local neighborhood decay forgetting
// Require:
D = {(< u, i, t >)1, ...}: data stream, r: recency parameter, t: length of walks, M: number of walks, α: decay parameter, β: diversity

parameter, x: parameter for edge removal, (V,E,w): weighted digraph, U: set of users, I: set of items, Su: list of interactions by u;
for < u, i, t >∈ D do

top_n_items = recommendItems(Su, r, N, V , E, t, M) [Schmitt and Spinosa 2022];
evaluate(top_n_items);
for s ∈ successors(liu) do

w((liu, s))t ← αβX+(1−β)Y · w((liu, s))t−1;
if w((liu, s)) < αx then

E ← E \ (liu, s)

U, I, Su, liu, ltu, (V,E,w) = incrementalGraphUpdate() [Schmitt and Spinosa 2022];

p, and ∆+(N+(p)) and δ+(N+(p)) are the maximum and minimum outdegree among successors of
p, respectively. In essence, Eq. (1) introduces a balance between diversity and exploration that can
be controlled through β, where slower forgetting is enforced on items with lower indegree and higher
outdegree, i.e., items from the long-tail that increase the exploration possibilities of random walks.

Since Eq. (1) continuously reduces information over time unless reinforced by newly generated
data, hence ensuring that recent information is retained in the neighborhood of nodes, we introduce a
weight threshold ϕ = αx that removes obsolete edges to account for the increasing scalability concerns
related to ever-growing models, where x is a parameter and can be seen as the number of forgetting
interactions in the neighborhood without reinforcement. This way, the growth of the graph can be
controlled parametrically, while also increasing the likelihood of retaining nodes from the long-tail.

Thus, our forgetting technique requires three parameters: fading factor α, diversity parameter β and
x that controls weight threshold ϕ. We refer to this technique as local neighborhood decay. The online
procedure of IGSIπ̂t with forgetting is presented in Algorithm 1. When a new observation ⟨u, i, t⟩
arrives from the data stream, we first generate a recommendation to u for evaluation purposes. Then,
we apply forgetting over the neighborhood of the last item interacted by u (liu) and remove obsolete
edges if necessary. Finally, the graph is updated based on ⟨u, i, t⟩.

5. EXPERIMENTS

Datasets. Four datasets from movie and music domains were used, as summarized in Table I. ML-1M
and ML-10M are binary versions of the MovieLens datasets. To simulate positive implicit feedback,
we discarded ratings below 5. PLC-STR consists of timestamped log of music listening events from
social network Palco Principal. LFM-1K consists on the first 25% of events from the Last.fm dataset.

Evaluation protocol. We use a prequential evaluation adopted by [Vinagre et al. 2019]. For each
incoming event ⟨u, i, t⟩ in the stream, the model is first tested then updated based on four steps: (1) If
u is a known user, use the current model to recommend N items to u, otherwise go to step 3; (2) Score
the recommendation list given the observed item i; (3) Update the model with ⟨u, i, t⟩; (4) Proceed to
the next observation. We measure accuracy through HitRate@N (HR@N) and DCG@N, as defined in
[Frigó et al. 2017], with N = 20. We measure scalability through average update and recommendation
times per sample, and average number of edges in the graph. Finally, we evaluate diversity through
Intra-List Diversity (ILD) [Smyth and McClave 2001], defined as the average pairwise cosine distance
of items in the recommendation list. We split datasets following the evaluation procedure proposed by
[Matuszyk et al. 2018]: after sorting datasets chronologically, the first 20% are used to built models,
the next 30% to optimize parameters and the remaining 50% for prequential evaluation.

Table I: Dataset description.

Dataset Events Users Items Sparsity Source
ML-1M 226,310 6,014 3,232 98.84% https://grouplens.org/datasets/movielens/1m/
ML-10M 1,544,812 67,312 8,721 99.74% https://grouplens.org/datasets/movielens/10m/
PLC-STR 1,466,893 25,463 40,213 99.92% https://rdm.inesctec.pt/dataset/cs-2017-003
LFM-1K 4,234,033 546 399,171 99.46% http://ocelma.net/MusicRecommendationDataset/

Symposium on Knowledge Discovery, Mining and Learning, KDMILE 2022 - Algorithms Track.



6 · Murilo F. L. Schmitt and Eduardo J. Spinosa

Table II: Impact of parameter β on IGSIπ̂t with local neighborhood decay forgetting.

ML-1M ML-10M LFM-1K PLC-STR
β HR DCG ILD HR DCG ILD HR DCG ILD HR DCG ILD
- 0.234 0.102 0.811 0.198 0.086 0.829 0.182 0.141 0.841 0.590 0.431 0.818

0.0 0.230 0.099 0.793 0.195 0.075 0.808 0.182 0.140 0.841 0.593 0.433 0.818
0.1 0.229 0.099 0.797 0.200 0.080 0.809 0.182 0.140 0.841 0.593 0.433 0.818
0.2 0.231 0.100 0.800 0.206 0.086 0.813 0.182 0.140 0.841 0.593 0.433 0.818
0.3 0.232 0.101 0.804 0.210 0.091 0.818 0.182 0.140 0.841 0.592 0.433 0.818
0.4 0.234 0.101 0.807 0.214 0.094 0.824 0.182 0.140 0.841 0.593 0.433 0.818
0.5 0.234 0.102 0.811 0.218 0.097 0.831 0.182 0.141 0.841 0.593 0.433 0.819
0.6 0.236 0.103 0.814 0.219 0.097 0.837 0.182 0.141 0.842 0.592 0.432 0.819
0.7 0.236 0.103 0.818 0.217 0.096 0.844 0.182 0.141 0.842 0.592 0.432 0.819
0.8 0.235 0.103 0.822 0.216 0.096 0.851 0.182 0.141 0.842 0.592 0.432 0.820
0.9 0.233 0.102 0.825 0.210 0.093 0.858 0.182 0.141 0.842 0.591 0.431 0.820
1.0 0.233 0.101 0.828 0.203 0.089 0.866 0.182 0.140 0.842 0.591 0.431 0.821

Baselines. We use IGSIπ̂t without forgetting, and also extend it with both our proposed forgetting
technique and the following ones: Sliding window - A traditional abrupt technique. We define windows
based on time intervals of size τ , where observations outside of the windows are forgotten; Time-based
decay - A technique [Tabassum et al. 2020] that sporadically reduces relevance of edges based on time.
We define a fixed period τ , and each time it elapses, edges are gradually forgotten by a factor α and
removed if w(e) < 1.0; Recency queue - A global FIFO queue is maintained with all items seen in the
stream, ordered based on recency. For each ⟨u, i, t⟩, j at the head is selected to lose relevance by a
factor α. Edges are removed based on threshold ϕ, and j is reinserted at the tail [Vinagre et al. 2015].

Parameters. We use the optimal parameters for IGSIπ̂t reported in [Schmitt and Spinosa 2022].
Considering forgetting, we tested values for α ∈ [0.8, 0.99] in steps of 0.01, where higher values
presented the best results, except for time-based decay, for which we set α = 0.9. We set α = 0.99 for
the remaining ones. Baselines were optimized with grid search and values are reported in the results.

Impact of diversity parameter β. We tested values for β ∈ [0, 1] in steps of 0.1. Results of
these experiments are presented in Table II. As shown in Table II, diversity increases with parameter
β. Accuracy tends to increase with β until a certain threshold, after which it starts to decrease.
An interesting observation is that the impact of β is highly dependent on the dataset and directly
related to the degree distribution on the graph, as seen when comparing results on ML-1M and ML-
10M to LFM-1K and PLC-STR, where there are greater changes on datasets with higher average
neighborhood size. Thus, β can be adjusted according to the application. In subsequent experiments,
we select values for β that produce the highest DCG@20, followed by highest ILD.

Impact of weight threshold ϕ. We next evaluate the impact of ϕ. Results are presented in
Table III. From Table III, ϕ can considerably reduce the number of edges, thus reducing memory
requirements, while also obtaining major improvements in accuracy for ML-1M and ML-10M, and
slight ones for PLC-STR. For LFM-1K, it reduces the size of the model without decreases in accuracy.
It is beneficial to set a threshold, as accuracy starts to decrease after a certain value of ϕ, suggesting
an accumulation of obsolete edges, which directly impacts accuracy and scalability. We select values
for x that produce the highest DCG@20, followed by highest decrease in average number of edges.

Overall results. Results are shown in Table IV. For all datasets, the proposed forgetting technique,
local neighborhood decay (LND), obtained the best results in accuracy. The application of the remain-

Table III: Impact of parameter x on IGSIπ̂t with local neighborhood decay forgetting.

ML-1M ML-10M LFM-1K PLC-STR
x HR DCG #Edges HR DCG #Edges HR DCG #Edges HR DCG #Edges
- 0.234 0.102 61,939 0.198 0.086 224,781 0.182 0.141 1,019,439 0.590 0.431 185,060
0 0.228 0.098 9,928 0.190 0.084 36,948 0.155 0.125 421,626 0.448 0.341 57,811
5 0.241 0.106 33,103 0.217 0.097 75,305 0.182 0.141 881,605 0.589 0.429 116,502
10 0.243 0.107 44,010 0.223 0.100 96,784 0.182 0.141 955,763 0.591 0.431 134,709
15 0.241 0.107 49,671 0.225 0.101 112,532 0.182 0.141 983,056 0.593 0.432 145,352
20 0.240 0.105 52,922 0.226 0.101 124,921 0.182 0.141 996,639 0.593 0.432 152,509
25 0.240 0.105 54,987 0.225 0.100 134,839 0.182 0.141 1,004,021 0.593 0.432 157,571
30 0.239 0.105 56,384 0.224 0.100 143,123 0.182 0.141 1,008,564 0.593 0.432 161,409
35 0.237 0.103 57,403 0.224 0.099 150,101 0.182 0.141 1,011,426 0.593 0.433 164,415
40 0.237 0.104 58,245 0.224 0.099 156,059 0.182 0.141 1,013,395 0.592 0.433 166,898
45 0.237 0.104 58,916 0.222 0.099 161,240 0.182 0.141 1,014,750 0.592 0.432 168,921
50 0.237 0.103 59,445 0.222 0.099 165,814 0.182 0.141 1,015,746 0.593 0.433 170,607

Symposium on Knowledge Discovery, Mining and Learning, KDMILE 2022 - Algorithms Track.



KDMiLe - Symposium on Knowledge Discovery, Mining and Learning - Algorithms Track · 7

Table IV: Overall results for all techniques. Best results are highlighted in bold.

Dataset Technique Param. HR DCG ILD #Edges Time(ms)
Upd. Rec. Tot.

ML-1M IGSI
π̂t - 0.246 0.109 0.779 109,901 0.2 20.9 21.1

local_n_decay β = 0.6, ϕ = α10 0.255 0.114 0.795 65,975 0.3 20.2 20.5
recency_queue ϕ = α5 0.239 0.106 0.765 68,373 2.0 20.5 22.5

time_based τ = 30 0.246 0.108 0.794 50,766 0.4 19.3 19.7
sliding_window τ = 90 0.214 0.094 0.816 46,086 0.3 19.3 19.6

ML-10M IGSI
π̂t - 0.200 0.091 0.830 476,448 0.5 24.8 25.3

local_n_decay β = 0.6, ϕ = α20 0.221 0.103 0.867 238,129 0.5 21.9 22.4
recency_queue ϕ = α5 0.200 0.090 0.816 217,519 7.5 23.3 30.8

time_based τ = 14 0.205 0.096 0.865 59,152 0.6 19.2 19.8
sliding_window τ = 540 0.220 0.102 0.857 129,411 0.9 21.7 22.6

LFM-1K IGSI
π̂t - 0.233 0.180 0.834 1,990,079 0.1 20.8 20.9

local_n_decay β = 0.9, ϕ = α5 0.233 0.181 0.837 1,579,646 0.3 19.6 19.9
recency_queue ϕ = α0 0.210 0.166 0.822 1,010,565 55.7 20.3 76.9

time_based τ = 60 0.223 0.175 0.832 1,068,100 0.2 19.2 19.4
sliding_window τ = 180 0.203 0.157 0.845 1,162,517 0.2 20.0 20.2

PLC-STR IGSI
π̂t - 0.600 0.431 0.784 355,926 0.01 19.5 19.5

local_n_decay β = 0.2, ϕ = α20 0.603 0.434 0.788 277,396 0.03 18.7 18.7
recency_queue ϕ = α10 0.596 0.429 0.782 258,691 2.9 19.8 22.7

time_based τ = 90 0.597 0.429 0.782 207,944 0.2 18.9 19.1
sliding_window τ = 180 0.573 0.417 0.798 118,494 0.2 18.5 18.7

ing techniques generally decreased accuracy when compared to IGSIπ̂t without forgetting, except for
ML-10M. For diversity, LND improves performance compared to no forgetting, and was best or second
best for all datasets. While the sliding window obtained the best diversity for two datasets, it was
also less accurate, as these are conflicting objectives. For LND, parameter β allows for an increase in
diversity. Considering update time, IGSIπ̂t without forgetting presents better results, since the update
is made solely on a single edge in the graph. Update time significantly increases for the recency queue
technique, as the queue grows linearly to the number of items. The increase is less significant for the
remaining techniques. Although update time is increased for all forgetting techniques, a consequence
of their application is the removal of edges in the graph, reducing time and memory requirements
and improving recommendation time. Thus, the trade-off between accuracy and scalability can be
controlled parametrically. Comparing the average processing time per sample, i.e., both update and
recommendation times, our proposed technique is outperformed only by the time-based technique.

For further evaluation, we plot moving averages for HR@20, number of edges and processing time
per sample over time for dataset ML-10M, as presented in Fig.1. We limit the plots to one dataset
due to space restrictions. From Fig.1a, LND generally outperforms other techniques throughout
most of the time in accuracy. The increase obtained by our technique results from the manner in
which items are selected to lose relevance. Since it is applied locally, it ensures that concepts are
only forgotten in the presence of newer concepts and when not reinforced by new data. In Fig.1b,
for IGSIπ̂t without forgetting, the average number of edges grows proportionally to new samples
over time. For LND, following a decrease resulting from the deletion of obsolete edges, it grows
steadily, as insertions and deletions occur continuously, adding new information and removing outdated
ones based on recency. Finally, Fig.1c shows the effect of reduced models on the average processing
time per sample. For IGSIπ̂t without forgetting, average time increases with the size of the model.
With forgetting, reduction of edges decreases recommendation time. Although there is an increase in
update time (Table IV), forgetting eventually reduces average processing time per sample, and such
reduction depends on the technique. Overall, our proposed forgetting technique improved diversity
and processing time, allowing a balance between these metrics through parameter β and threshold ϕ.

6. CONCLUSION

In this work, we proposed a gradual forgetting technique that locally forgets information based on
recency and popularity in order to overcome concerns resulting from the accumulation of obsolete
information in incremental neighborhood-based models. The proposed technique decreases the im-
portance of neighborhood of items for every incoming observation to emphasize more recent ones. To
increase diversity, parameter β balances the impact of neighborhood degree distribution to increase
the likelihood of retaining less popular items. Scalability is controlled by a weight threshold ϕ that

Symposium on Knowledge Discovery, Mining and Learning, KDMILE 2022 - Algorithms Track.



8 · Murilo F. L. Schmitt and Eduardo J. Spinosa

0 100000 200000 300000 400000 500000 600000 700000
sample

0.15

0.20

0.25

0.30

0.35

H
itR

at
e@

20

(a) Evolution of HitRate@20 for ML-10M

0 100000 200000 300000 400000 500000 600000 700000
sample

0

2

4

6

#e
dg

es

1e5 (b) Evolution of average number of edges for ML-10M

0 100000 200000 300000 400000 500000 600000 700000
sample

20

25

30

tim
e 

pe
r s

am
pl

e 
(m

s)

(c) Evolution of average processing time per sample for ML-10M

no_forgetting time_decay recency_queue local_neighborhood_decay sliding_window

Fig. 1: Evolution of several metrics for dataset ML-10M with window size n = 5000.

prunes edges that are not reinforced. We evaluated our proposal on a recent graph-based approach
IGSIπ̂t . Experiments showed that our proposal was able to reduce the size of the graph, improving
scalability, while also generally improving accuracy. In future work, we aim to experiment on larger
datasets and evaluate its impact on other incremental neighborhood-based methods.

REFERENCES

Al-Ghossein, M., Abdessalem, T., and Barre, A. A survey on stream-based recommender systems. ACM Com-
puting Surveys (CSUR) 54 (5): 1–36, 2021.

Cremonesi, P., Koren, Y., and Turrin, R. Performance of recommender algorithms on top-n recommendation
tasks. In Proceedings of the 4th ACM conference on Recommender systems. pp. 39–46, 2010.

Ding, Y. and Li, X. Time weight collaborative filtering. In Proceedings of the 14th ACM international conference on
Information and knowledge management, 2005.

Frigó, E., Pálovics, R., Kelen, D., Kocsis, L., and Benczúr, A. Online ranking prediction in non-stationary
environments. In Proceedings of the 1st Workshop on Temporal Reasoning in Recommender Systems. ACM, 2017.

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., and Bouchachia, A. A survey on concept drift adaptation.
ACM computing surveys (CSUR) 46 (4): 1–37, 2014.

Koren, Y. Collaborative filtering with temporal dynamics. In Proceedings of the 15th ACM SIGKDD, 2009.
Matuszyk, P., Vinagre, J., Spiliopoulou, M., Jorge, A. M., and Gama, J. Forgetting techniques for stream-based

matrix factorization in recommender systems. Knowledge and Information Systems 55 (2): 275–304, 2018.
Ning, X., Desrosiers, C., and Karypis, G. A comprehensive survey of neighborhood-based recommendation meth-

ods. Recommender systems handbook , 2015.
Schmitt, M. F. and Spinosa, E. J. Scalable stream-based recommendations with random walks on incremental graph

of sequential interactions with implicit feedback. User Modeling and User-Adapted Interaction 32 (4): 543–573, 2022.
Schmitt, M. F. L. and Spinosa, E. J. Incremental graph of sequential interactions for online recommendation with

implicit feedback. In 3rd Workshop on Online Recommender Systems and User Modeling, 2020.
Smyth, B. and McClave, P. Similarity vs. diversity. In ICCBR. Springer, pp. 347–361, 2001.
Tabassum, S., Veloso, B., and Gama, J. On fast and scalable recurring link’s prediction in evolving multi-graph

streams. Network Science 8 (S1): S65–S81, 2020.
Vinagre, J. and Jorge, A. M. Forgetting mechanisms for scalable collaborative filtering. Journal of the Brazilian

Computer Society 18 (4): 271–282, 2012.
Vinagre, J., Jorge, A. M., and Gama, J. Collaborative filtering with recency-based negative feedback. In Proceedings

of the 30th Annual ACM SAC. Spain, pp. 963–965, 2015.
Vinagre, J., Jorge, A. M., Rocha, C., and Gama, J. Statistically robust evaluation of stream-based recommender

systems. IEEE Transactions on Knowledge and Data Engineering 33 (7): 2971–2982, 2019.

Symposium on Knowledge Discovery, Mining and Learning, KDMILE 2022 - Algorithms Track.


