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Abstract. Some recent pieces of work in the Machine Learning (ML) literature have demonstrated the usefulness
of assessing which observations are hardest to have their label predicted accurately. By identifying such instances, one
may inspect whether they have any quality issues that should be addressed. Learning strategies based on the difficulty
level of the observations can also be devised. This paper presents a set of meta-features that aim at characterizing
which instances of a dataset are hardest to have their label predicted accurately and why they are so, aka instance
hardness measures. Both classification and regression problems are considered. Synthetic datasets with different levels
of complexity are built and analyzed. A Python package containing all implementations is also provided.

CCS Concepts: • Computing methodologies → Machine learning.
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1. INTRODUCTION

A recent movement in the Machine Learning (ML) community named data-centric Artificial Intelli-
gence (AI) claims one needs to focus more efforts on data understanding and data quality improvement
than on the development of more complex ML models [Schweighofer 2021]. Meanwhile, the Metalearn-
ing (MtL) literature is plenty of measures, also named meta-features, able to characterize different
properties of a dataset [Rivolli et al. 2022]. Among the existent meta-features, those able to estimate
the difficulty level of a dataset, aka data complexity measures, have proven to provide valuable infor-
mation on the underlying challenges posed by different classification [Lorena et al. 2019] and regression
[Lorena et al. 2018] datasets.

For classification problems, Smith et al. [2014] have also introduced a set of measures able to
characterize the difficulty level of each individual observation (instance) of a dataset. Some of the
data complexity measures can also be decomposed for an instance-level analysis [Arruda et al. 2020].
They are named instance hardness measures (HM) and try to pinpoint those observations of a dataset
that any ML technique will probably struggle to classify correctly and possible reasons why they are
hard to classify, giving insights for supporting a data-centric analysis. For regression problems, on the
other hand, there are no similar previous studies on measuring the hardness level of the individual
observations of a dataset based on HM. This paper tries to bridge this gap by proposing a set of
HM for regression problems. For this, we also propose a definition of how difficult it can be to
predict the label of an instance in regression problems. Next, we perform a systematic analysis of
the HM of classification and regression problems by generating and analyzing synthetic datasets of
different complexity levels. Finally, we provide a Python package containing implementations of all
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HM presented.

This paper is structured as follows: Section 2 presents the background on measuring instance
hardness. Section 3 presents the HM of classification and regression problems. Section 4 presents an
experimental evaluation of the HM. Section 5 concludes this paper.

2. INSTANCE HARDNESS DEFINITION

While many studies in the field of MtL focus mainly on dataset level analysis, few approach instance
level investigation in a comprehensive way, where instead of comparing the difficulty of different
datasets, one is interested in investigating how hard instances belonging to the same dataset are
to classify. A more systematic study is presented in [Smith et al. 2014], where instance hardness
(IH), roughly speaking, is defined as the likelihood of an instance being misclassified despite the ML
technique considered. Given a pool of classifiers L with different biases, they define the IH of an
instance as:

IHL
(
xi, yi

)
= 1− 1

|L|

|L|∑
j=1

p
(
yi|hj(xi)

)
, (1)

where p
(
yi|hj(xi)

)
is the probability assigned to xi to its original label yi in the dataset by a learning

model hj in the pool. The idea is that instances that are frequently misclassified by a pool of diverse
learning algorithms can be considered hard. On the other hand, easy instances are likely to be correctly
classified by any of the considered algorithms.

While the definition of instance hardness for classification problems arises naturally, we cannot say
the same for regression problems. Discrete target values induce a discrete probability space, if we set
the sample space Ω = Y for a discrete output space. For classification problems the categorical outputs
make it possible to readily measure the probabilities assigned to each of the classes. In regression
problems, however, the set Y is continuous, implying that adaptations are needed. Disregarding
domain knowledge, how can one tell if a prediction made by a regression algorithm for a given instance
is good or bad? This question is quite tricky, but answering it would give hints on how to define IH
for regression. One possible answer is to define a relative measure of IH, in which case some instances
in a dataset would be considered easy and some hard. That is as far as we can get without any prior
knowledge, but may be sufficient for datasets displaying non-zero variance on the response variable,
var(y) > 0.

It is a fact that the closer the predicted value is to the actual label of an instance, the more accurate
the regressor response is. Therefore, it is more intuitive to define our probability space over distances
z = d(y, ŷh), where y is the label of an instance and ŷh is the prediction obtained by a model h. We
use a kernel κ(z) to quantify the similarity. For instance, consider an exponential kernel, such that

κ(z) = exp

(
− z

γ

)
. Plugging it into the cumulative distribution function, we arrive in the form of

the exponential distribution. Now, we can define the instance hardness for regression as:

IHL
(
xi, yi

)
= 1− 1

|L|

|L|∑
j=1

exp

(
− d(yi, ŷji)

γ

)
, (2)

where ŷji represents a regressor j in the pool L makes for instance xi. A natural issue that arises is
how to choose a proper value for γ. We can see it as a normalizing constant. For instance, we can set
γ as the power of the signal y, that is, γ = 1

N

∑
i y

2
i . In that case, depending on the chosen distance

metric d(·, ·), d(·,·)
γ is equivalent to some normalized error metric, such as normalized squared error

when the Euclidean distance is used.
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3. INSTANCE HARDNESS MEASURES

Apart from the definition of IH, Smith et al. [2014] also propose a set of hardness measures (HM)
for classification problems, which aim to explain why some instances are harder to have their label
predicted correctly than others in a dataset. These measures are presented next, along with novel
HM devoted to regression problems. All of them are computed for the instances of a dataset D with
n data instances xi assuming labels yi in a set Y , which is qualitative for classification problems and
quantitative for regression problems. The definitions of all measures are standardized in this paper so
that larger values are observed for more difficult instances.

3.1 HM for Classification

The HM for classification used here were defined in [Smith et al. 2014; Arruda et al. 2020], except
from the last one. There are also other HM in these works, but they have similar definitions and are
redundant to at least one of the presented measures and are omitted here.

k-Disagreeing Neighbors. kDN(xi): outputs the percentage of the k nearest neighbors of xi in
D which do not share its label, with k set to 5. Instances surrounded by examples from a different
class are harder to classify.

Disjunct Class Percentage. DCP (xi): this HM builds a decision tree using D and considers the
percentage of instances in the disjunct of xi which share the same label as xi. Easier instances will
have a larger percentage of examples sharing the same label as them in their disjunct, so we output
the complement of this percentage.

Tree Depth. TD(xi): depth of the leaf node that classifies xi in an unpruned decision tree, nor-
malized by the maximum depth of the tree built from D. Harder to classify instances tend to be
placed at deeper levels of the tree and present higher TD values.

Class Likelihood Difference. CLD(xi): takes the difference between the likelihood that xi be-
longs to its class yi and the maximum likelihood it has to any other class. The difference in the class
likelihood is larger for easier instances, because the confidence it belongs to its class is larger than
that of any other class. We take the complement of the difference.

Class Balance. CB(xi): measures the skewness of xi’s class by taking the proportion of instances
that share the label of xi in D. We take a complement of the measure so that CB will be minimum
for all instances if the problem is balanced, which is simpler concerning the class balance aspect.

Fraction of features in overlapping areas. F1(xi): this measure takes the percentage of fea-
tures of the instance xi whose values lie in an overlapping region of the classes. One may regard a
feature as having overlap if it is not possible to separate the classes using a threshold on that feature’s
values. Larger values of F1 are obtained for data instances which lie in overlapping regions for most
of the features, implying they are harder to classify according to the F1 interpretation.

Fraction of nearby instances of different classes. N1(xi): first a minimum spanning tree
MST is built, where each instance of the dataset D corresponds to one vertex and nearby instances
are connected according to their distances in order to obtain a tree of minimal cost concerning the
sum of the edges’ weights. N1 gives the percentage of instances of different classes xi is connected to.
Larger values indicate that xi is close to examples of different classes, making it hard to classify.

Ratio of the intra-class and extra-class distances. N2(xi): considers the complement of the
ratio of the distance of xi to the nearest example from its class to the distance it has to the nearest
instance from a different class (nearest enemy). Larger values of N2 indicate that xi is closer to an
example from another class than to an example from its own class and is harder to classify.

Local Set Cardinality. LSC(xi): the Local-Set (LS) of an instance xi is the set of points from
D whose distances to xi are smaller than the distance between xi and xi’s nearest enemy [Leyva
et al. 2014]. LSC outputs the relative cardinality of such set, so that larger local sets are obtained
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for easier examples, which are in dense regions surrounded by instances from their own classes. For
standardization, we output a complement of the relative local set cardinality.

Local Set Radius. LSR(xi): takes the normalized radius of xi’s local set. Larger radiuses are
expected for easier instances, which are surrounded by many instances sharing its class, so we take
the complement of such measure.

Usefulness. U(xi): fraction of instances having xi in their local sets. If xi is easy to classify, it will
be close to many examples from its class and therefore will be more useful. We take the complement
of this measure as output.

Density. De(xi): this measure is proposed here based on a complexity measure originally taken
at a dataset-level [Lorena et al. 2019]. First a graph G = (V,E) is built from D, connecting instances
from the same class for which the distance is inferior to a threshold ϵ, set as 15% of the smallest
distances. The complement of the density of the connections a vertex has in the graph gives its
hardness level. If xi is easy to classify, it will be surrounded by close elements from its class and will
have a lower De value.

3.2 HM for Regression

For proposing the HM for regression, we took as basis the set of data complexity measures and
meta-features for regression problems [Lorena et al. 2018; Amasyali and Ersoy 2009] and studied how
to decompose them at the instance-level. The measures TD and De from the previous section can
also be applied to regression problems. While TD will need a regression tree to be induced from D
instead of the decision tree, De will take a proximity graph between all instances in D, but with no
post-processing step for pruning edges.

Collective Feature Efficiency. CFE(xi): this measure starts by identifying the feature with
highest correlation to the output in D. All examples with a small residual value (|εi| ≤ 0.1) after a
linear fit between this feature and the target attribute are removed. Then, the most correlated feature
to the remaining data points is found and the previous process is repeated until all features have been
analyzed or no example remains. For an instance xi, we take the round li where it is removed from
the analysis, normalized by the maximum number of rounds. Higher CFE values are obtained for
harder instances, which require more features to get a linear fit.

Absolute Error after Linear fit. LE(xi): first a statistical model of a Multiple Linear Regres-
sion is fit to D. For each xi a residual or error εi in relation to the actual output yi can be measured
and LE is given as |εi|. Larger values are attained for harder instances.

Output Distribution. S1(xi): As in N1 for classification, first a MST is generated from input
data. Next S1 monitors whether the instances joined in the MST have similar output values. As an
instance xi can have multiple neighbors in the MST, we take the average of the differences between
their outputs. Higher values will be obtained for harder instances, which are connected to examples
with dissimilar outputs.

Input Distribution. S2(xi): S2 first orders the data points according to their output values yi
and then computes the Euclidean distance between pairs of examples that are neighbors. In the
ordering, each element will have one or two neighbor examples. For two neighbors, the average should
be taken. Otherwise, the unique neighborhood difference is output.

Squared Error of k-nearest neighbor. S3(xi): calculates the squared error (SE) of a k-nearest
neighbor regressor (NN), using leave-one-out. As in kDN , the value of k is set to 5.

Histogram bin. HB(xi): first a histogram of the normalized values of y is taken. Next, we output
the complement of the percentage of instances that have their labels placed in the same bin as xi.
Easy instances will tend to share labels with many other instances in D than hard instances.
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4. EXPERIMENTAL EVALUATION AND RESULTS

In this section we perform some experiments to show how the HM behave for classification and
regression datasets of increasing complexities. All measures described previously are implemented in
Python and distributed in the PyHard library1 [Paiva et al. 2022].

4.1 Classification datasets

Using the mlbench package [Leisch et al. 2009] from the R programming language, we generated
synthetic datasets where the spread of the data and overlap of the classes continuously increases.
The base dataset is the 2D-normals (2-dimensional Gaussian Problem) with two classes and 500
observations, where each class is described by a two-dimensional gaussian with centers equally spaced
on a circle around the origin with radius r =

√
2. The standard deviation (sd) of the gaussians was

increased from 0.1 to 2, at steps of 0.1. The larger the sd, the higher the difficulty of the problem.

These datasets were input to the PyHard tool to obtain the HM listed in Section 3.1. The HM
values obtained for each instance of the datasets were registered and their boxplots are plotted in
Figure 1. Each plot, except for the last, presents the values of one HM (y axis) along the different
datasets (x axis), with increasing complexities. We can notice that for most of the HM the values
tend to increase when the standard deviation values of the datasets rise, as expected. This behavior
is much more evident and smooth for measures CLD, N2, LSC, LSR, U and De. As the overlap and
spread of the classes increases, the instances tend to present a lower likelihood of belonging to their
classes, so that higher values for CLD are obtained. This also happens for N2, where for datasets
with low sd values the classes are compact and the intra class distances are much lower than the
inter class distances and this rate inverts for higher σ values. LSC and LSR reflect the fact that the
classes have increasing overlap for datasets with higher sd values, so the local sets of each instance
become smaller. As a reflection of the decrease of the sizes of the local sets, the instances tend to
present higher U values for datasets with more overlap too. And De increases as sd increases as a
consequence of a higher spread of the data points in the input space, making each class less dense and
consequently also decreasing the neighborhood of each instance.

For kDN , F1 and N1 the results vary less, as these measures present a discrete set of values. kDN ,
for instance, has as possible values for each instance the values 0, 0.2, 0.4, 0.6, 0.8 and 1. For datasets
with few or no overlap (sd from 0.1 to 0.9), the values of kDN are null, as expected, as all instances
are surrounded by elements from their own classes. Similarly, N1 is also close to 0 for datasets with
no or few overlap (sd equal to 0.1 up to 1.1). F1 is null for all datasets with low sd values and
then increases until becoming dominated by maximum values. Therefore, there is an increase in the
overlap of the features as sd increases. CB does not show much variation, because all datasets are
built similarly and have similar class distributions. DCP shows a more erratic behavior for datasets
with increasing class overlap compared to the previous measures, but the tendency of low values for
datasets with no overlap is kept. Finally, some counter-intuitive behaviors are observed for TD. When
there is no overlap (sd between 0.1 and 0.5), it might be the case one unique split of the dataset and
therefore one unique node was enough for classifying most of the dataset correctly. Because of the
normalization by the highest depth of the tree, all values become 1 or close to that. But other erratic
results for both DCP and TD can also be a consequence on how the decision tree splits the input
space using orthogonal cuts on the features values. Many splits may be required even for simple data
conformations (for example, for a linearly separable dataset requiring an oblique hyperplane for the
separation of the classes).

The generated datasets were also fed into seven classification techniques of distinct biases, namely:
Support Vector Machine (SVM) with linear Kernel, SVM with RBF Kernel, Random Forest (RF),

1https://pypi.org/project/pyhard/
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Fig. 1. HM for classification and instance hardness values, for all classification datasets generated.

Gradient Boosting (GB), Bagging, Logistic Regression and Multilayer Perceptron (MLP). All classifi-
cation techniques were run in a 10-fold cross-validation procedure and had hyperparameters tuned by
an inner 3-fold cross-validation on the training folds. Taking these classifiers as the pool L in Equation
1, the last graph from Figure 1 presents the boxplots of the IH values for each of the datasets. As
in the case of the HM, we can clearly see a upward trend when increasing the standard deviation
from 0.1 to 2. That is, the pool of classifiers tend to present more difficulties in classifying correctly
instances of datasets with more spread and overlap. Meta-features such as CLD, N2, LSC, LSR, U
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and De have a high correlation to the instance hardness values as measured by the performance of
the pool of classifiers and are good descriptors of the increasing instance hardness observed.

4.2 Regression datasets

The regression datasets were generated as follows [Lorena et al. 2018]: each one has 500 observations
and one input feature with values randomly chosen in [0, 1] according to an uniform distribution.
Next the yi ∈ ℜ output values are calculated so that the underlying function relating the input to
the output is linear. Starting from this perfect linear relationship between the input and the output
values, we associate a gaussian noise N(0, σ) to the labels. The higher the value of σ, more difficult
instances are contained in the dataset. The σ values were varied from 0.1 to 1, at steps of 0.1.

The same procedures adopted for the classification datasets are repeated here. The boxplots of the
HM are presented in Figure 2, except from the last plot. We can notice that the HM LE,HB and S2
are able to capture the hardness raising trend as the value of σ increases. Since the datasets have
primarily a linear structure, which is disturbed by the σ values, the increase in the residuals of a
linear regressor as monitored by LE was clearly expected. As the σ increases, the datasets tend to
present a larger spread in the y values, justifying why HB is also able to capture these disturbances,
although with a lower sensibility. Similarly, neighbor instances in the input space will tend to present
large deviation on the labels values for datasets with increasing σ values, reflecting in the raise of the
S2 values accordingly.

Measure De was not as effective for regression problems compared to the classification counterpart
and some alteration on the definition of the proximity graphs might be needed. S1 has always shown
low values, which may be a consequence of taking the averages of very low differences. CFE has a
tendency similar to that of F1 for classification problems. It assumes discrete values and for σ = 0
all instances correlate perfectly to the output, as expected, as there is a perfect linear relationship
between them. But for σ = 0.3 to 1, for most of the instances the input feature does not correlate
to the output and the maximum value is output. S3 has a low variation of values and the kNN
regressor was not able to capture variations of increasing σ values. And TD has presented a very
erratic behavior in the regression datasets. This result may be explained by both the normalization
factor used for computing this measure and by the bias of the regression trees, which are not adequate
for datasets where the linear relationship to the output is oblique.

The instance hardness boxplots as measured by Equation 2 for the regression datasets is shown in
the last plot of Figure 2. The pool L of regression techniques used in Equation 2 was: AdaBoost,
ν-SVM, RF, Extremely Randomized Trees, Regression Tree, GN, MLP, Bagging, Bayesian Auto-
matic Relevance Determination, Kernel Ridge Regression, Stochastic Gradient Descent Regression
and Passive-Agressive Regression. As we can see in the plot, the IH values follow an increasing trend
as σ increases. Therefore, as the σ increases, the instances in the corresponding datasets become
more difficult to fit, despite the regressor employed. This also confirms that the proposed formulation
for IH in Equation 2 captures well the hardness level of the instances. The HM following the trend
observed for the IH the most are LE and S2.

5. CONCLUSIONS

This paper presents how the hardness level of the individual observations of a dataset in ML can
be measured, for both classification and regression problems. First the concept of instance hardness
according to the predictive performance of different models is formalized. Next, hardness measures
present different perspectives on why an instance is more difficult than another. Experimentally,
some of the HM were more effective in reflecting the increase in the difficulty of the instances in a
set of synthetic datasets. And measuring the instance hardness of regression problems using a pool
of regressors was validated, as the instance hardness values increase for noisy datasets. As future
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Fig. 2. Hardness Measures for regression and Instance Hardness.

work, we must evaluate the measures on other datasets, in particular introducing other sources of
complexity than those tested in this paper. For instance, more input features can be added, imposing
a higher sparsity in the dataset. The number of classes can also be progressively increased in the case
of classification problems. It is also important to validate the use of the measures in real datasets in
the future. And some HM should be refined, especially for regression problems. Finally, validating the
usage of the HM in applications such as data pre-processing, curriculum learning and active learning
are research paths worth future investigations.
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